HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Suppression of inflammatory cascade is implicated in methyl amooranin-mediated inhibition of experimental mammary carcinogenesis.

Abstract
Breast cancer represents the second leading cause of cancer-related deaths among women worldwide and preventive therapy could reverse or delay the devastating impact of this disease. Methyl-amooranin (methyl-25-hydroxy-3-oxoolean-12-en-28-oate, AMR-Me), a novel synthetic oleanane triterpenoid, reduced the incidence and burden of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors in rats through antiproliferative and proapoptotic effects. Since chronic inflammation plays an important role in the pathogenesis of breast cancer and several synthetic oleanane compounds are known potent anti-inflammatory agents, we aim to investigate anti-inflammatory mechanisms of AMR-Me by monitoring various proinflammatory and stress markers, such as cyclooxygenase-2 (COX-2) and heat shock protein 90 (HSP90), and nuclear factor-κB (NF-κB) signaling during DMBA mammary tumorigenesis in rats. Mammary tumors were harvested from a chemopreventive study in which AMR-Me (0.8-1.6 mg/kg) was found to inhibit mammary carcinogenesis in a dose-response manner. The expressions of COX-2, HSP90, NF-κB, and inhibitory κB-α (IκB-α) were determined by immunohistochemistry and reverse transcription-polymerase chain reaction. AMR-Me downregulated the expression of intratumor COX-2 and HSP90, suppressed the degradation of IκB-α, and reduced the translocation of NF-κB from cytosol to nucleus. Our present study provides the first in vivo evidence that NF-κB-evoked inflammatory cascade is a major target of AMR-Me in breast cancer. Our current results together with our previous findings suggest that disruption of NF-κB signaling contributes to anti-inflammatory, antiproliferative, and apoptosis-inducing mechanisms involved in AMR-Me-mediated chemoprevention of rat mammary carcinogenesis. These encouraging mechanistic results coupled with a safety profile should facilitate the clinical development of AMR-Me as breast cancer chemopreventive drug.
AuthorsAnimesh Mandal, Deepak Bhatia, Anupam Bishayee
JournalMolecular carcinogenesis (Mol Carcinog) Vol. 53 Issue 12 Pg. 999-1010 (Dec 2014) ISSN: 1098-2744 [Electronic] United States
PMID23846978 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Copyright© 2013 Wiley Periodicals, Inc.
Chemical References
  • Anti-Inflammatory Agents
  • Anticarcinogenic Agents
  • Antineoplastic Agents
  • HSP90 Heat-Shock Proteins
  • I-kappa B Proteins
  • NF-kappa B
  • Nfkbia protein, rat
  • methyl 25-hydroxy-3-oxoolean-12-en-28-oate
  • NF-KappaB Inhibitor alpha
  • Oleanolic Acid
  • Cyclooxygenase 2
Topics
  • Animals
  • Anti-Inflammatory Agents (pharmacology)
  • Anticarcinogenic Agents (pharmacology)
  • Antineoplastic Agents (pharmacology)
  • Apoptosis (drug effects)
  • Breast Neoplasms (drug therapy, metabolism)
  • Carcinogenesis (drug effects)
  • Cell Proliferation (drug effects)
  • Chemoprevention (methods)
  • Cyclooxygenase 2 (metabolism)
  • Down-Regulation (drug effects)
  • Female
  • HSP90 Heat-Shock Proteins (metabolism)
  • I-kappa B Proteins (metabolism)
  • Inflammation (drug therapy, metabolism)
  • Mammary Neoplasms, Experimental (drug therapy, metabolism)
  • NF-KappaB Inhibitor alpha
  • NF-kappa B (metabolism)
  • Oleanolic Acid (analogs & derivatives, pharmacology)
  • Rats
  • Rats, Sprague-Dawley

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: