HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Retinal ganglion cells are resistant to photoreceptor loss in retinal degeneration.

Abstract
The rapid and massive degeneration of photoreceptors in retinal degeneration might have a dramatic negative effect on retinal circuits downstream of photoreceptors. However, the impact of photoreceptor loss on the morphology and function of retinal ganglion cells (RGCs) is not fully understood, precluding the rational design of therapeutic interventions that can reverse the progressive loss of retinal function. The present study investigated the morphological changes in several identified RGCs in the retinal degeneration rd1 mouse model of retinitis pigmentosa (RP), using a combination of viral transfection, microinjection of neurobiotin and confocal microscopy. Individual RGCs were visualized with a high degree of detail using an adeno-associated virus (AAV) vector carrying the gene for enhanced green fluorescent protein (EGFP), allowed for large-scale surveys of the morphology of RGCs over a wide age range. Interestingly, we found that the RGCs of nine different types we encountered were especially resistant to photoreceptor degeneration, and retained their fine dendritic geometry well beyond the complete death of photoreceptors. In addition, the RGC-specific markers revealed a remarkable degree of stability in both morphology and numbers of two identified types of RGCs for up to 18 months of age. Collectively, our data suggest that ganglion cells, the only output cells of the retina, are well preserved morphologically, indicating the ganglion cell population might be an attractive target for treating vision loss.
AuthorsBin Lin, Edward Bo Peng
JournalPloS one (PLoS One) Vol. 8 Issue 6 Pg. e68084 ( 2013) ISSN: 1932-6203 [Electronic] United States
PMID23840814 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • enhanced green fluorescent protein
  • Green Fluorescent Proteins
Topics
  • Animals
  • Dependovirus (metabolism)
  • Disease Models, Animal
  • Green Fluorescent Proteins (metabolism)
  • HEK293 Cells
  • Humans
  • Mice
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Photoreceptor Cells (metabolism, physiology)
  • Retina (metabolism, physiopathology)
  • Retinal Degeneration (physiopathology)
  • Retinal Ganglion Cells (metabolism, physiology)
  • Retinitis Pigmentosa (physiopathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: