HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Putative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of silicon.

Abstract
We studied the growth of the araphid pennate diatom Synedra acus subsp. radians (Kützing) Skabichevskii using a fluorescent dye N(1),N(3)-dimethyl-N(1)-(7-nitro-2,1,3-benzoxadiazol-4-yl)propane-1,3-diamine (NBD-N2), which stains growing siliceous frustules but does not stain other subcellular organelles. We used a clonal culture of S. acus that was synchronized by silicon starvation. Epifluorescence microscopy was performed in two different ways with cells stained by the addition of silicic acid and the dye. Individual cells immobilized on glass were observed during the first 15-20 min following the replenishment of silicic acid after silicon starvation. Alternatively, we examined cells of a batch culture at time intervals during 36 h after the replenishment of silicic acid using fluorescence and confocal microscopy. The addition of silicic acid and NBD-N2 resulted in the rapid (1-2 min) formation of several dozen green fluorescent submicrometer particles (GFSPs) in the cytoplasm, which was accompanied by the accumulation of fluorescent silica inside silica deposition vesicles (SDVs) along their full length. In 5-15 min, GFSPs disappeared from the cytoplasm. Mature siliceous valves were formed within the SDVs during the subsequent 14-16 h. In the next 8-10 h, GFSPs appeared again in the cytoplasm of daughter cells. The data obtained confirm observations about the two-stage mechanism of silicon assimilation, which includes rapid silicon uptake (surge uptake) followed by slow silica deposition. It is likely that the observed GFSPs are silicon transport vesicles, which were first proposed by Schmid and Schulz in (Protoplasma 100:267-288, 1979).
AuthorsVadim V Annenkov, Tatjana N Basharina, Elena N Danilovtseva, Mikhail A Grachev
JournalProtoplasma (Protoplasma) Vol. 250 Issue 5 Pg. 1147-55 (Oct 2013) ISSN: 1615-6102 [Electronic] Austria
PMID23525742 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Silicon
Topics
  • Amino Acid Sequence
  • Diatoms (metabolism)
  • Microscopy, Confocal
  • Molecular Sequence Data
  • Silicon (metabolism)
  • Transport Vesicles (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: