HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

High pressure-high temperature decomposition of γ-cyclotrimethylene trinitramine.

Abstract
Decomposition of γ-cyclotrimethylene trinitramine (γ-RDX) under high pressure-high temperature conditions was examined to elucidate the reactive behavior of RDX crystals. Vibrational spectroscopy measurements were obtained for single crystals in a diamond anvil cell (DAC) at pressures from 6 to 12 GPa and temperatures up to 600 K. Global decomposition rates, activation energies, and activation volumes at several pressures and temperatures below the P-T locus for the γ-RDX decomposition were obtained. Similar to ε-RDX, but in contrast to α-RDX, we found that pressure decelerates the decomposition of γ-RDX. The decomposition deceleration with pressure in the γ-phase can be attributed to pressure-inhibiting bond homolysis step(s). The main decomposition species were identified as N(2)O, CO(2), and H(2)O, in accord with the species reported for the α-phase decomposition at high pressures. This work complements previous studies on RDX at HP-HT conditions and provides comprehensive results on the reactive behavior of γ-RDX; the γ-phase plays a key role in RDX decomposition at P-T conditions relevant to shock wave initiation.
AuthorsZbigniew A Dreger, Matthew D McCluskey, Yogendra M Gupta
JournalThe journal of physical chemistry. A (J Phys Chem A) Vol. 116 Issue 39 Pg. 9680-8 (Oct 04 2012) ISSN: 1520-5215 [Electronic] United States
PMID22971173 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: