HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Plasma-accelerated flyer-plates for equation of state studies.

Abstract
We report on a new technique to accelerate flyer-plates to high velocities (∼5 km/s). In this work, a strong shock is created through direct laser ablation of a thin polyimide foil. Subsequent shock breakout of that foil results in the generation of a plasma characterized by a smoothly increasing density gradient and a strong forward momentum. Stagnation of this plasma onto an aluminum foil and the resultant momentum transfer accelerates a thin aluminum flyer-plate. The aluminum flyer-plate is then accelerated to a peak velocity of ∼5 km/s before impact with a transparent lithium fluoride (LiF) window. Simulations of the stagnating plasma ramp compression and wave reverberations within the flyer-plate suggest that the temperature at the flyer-plate impact surface is elevated by less than 50 °C. Optical velocimetry is used to measure the flyer-plate velocity and impact conditions enabling the shocked refractive index of LiF to be determined. The results presented here are in agreement with conventional flyer-plate measurements validating the use of plasma-accelerated flyer-plates for equation of state and impact studies.
AuthorsD E Fratanduono, R F Smith, T R Boehly, J H Eggert, D G Braun, G W Collins
JournalThe Review of scientific instruments (Rev Sci Instrum) Vol. 83 Issue 7 Pg. 073504 (Jul 2012) ISSN: 1089-7623 [Electronic] United States
PMID22852692 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: