HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence.

Abstract
There has been growing interest in disrupting bacterial virulence mechanisms as a form of infectious disease control through the use of 'anti-infective' drugs. Pseudomonas aeruginosa is an opportunistic pathogen noted for its intrinsic antibiotic resistance that causes serious infections requiring new therapeutic options. In this study, an analysis of the P. aeruginosa PAO1 deduced proteome was performed to identify pathogen-associated proteins. A computational screening approach was then used to discover drug repurposing opportunities, i.e. identifying approved drugs that bind and potentially disrupt the pathogen-associated protein targets. The selective oestrogen receptor modulator raloxifene, a drug currently used in the prevention of osteoporosis and/or invasive breast cancer in post-menopausal women, was predicted from this screen to bind P. aeruginosa PhzB2. PhzB2 is involved in production of the blue pigment pyocyanin produced via the phenazine biosynthesis pathway. Pyocyanin is toxic to eukaryotic cells and has been shown to play a role in infection in a mouse model, making it an attractive target for anti-infective drug discovery. Raloxifene was found to strongly attenuate P. aeruginosa virulence in a Caenorhabditis elegans model of infection. Treatment of P. aeruginosa wild-type strains PAO1 and PA14 with raloxifene resulted in a dose-dependent reduction in pyocyanin production in vitro; pyocyanin production and virulence were also reduced for a phzB2 insertion mutant. These results suggest that raloxifene may be suitable for further development as a therapeutic for P. aeruginosa infection and that such already approved drugs may be computationally screened and potentially repurposed as novel anti-infective/anti-virulence agents.
AuthorsShannan J Ho Sui, Raymond Lo, Aalton R Fernandes, Mackenzie D G Caulfield, Joshua A Lerman, Lei Xie, Philip E Bourne, David L Baillie, Fiona S L Brinkman
JournalInternational journal of antimicrobial agents (Int J Antimicrob Agents) Vol. 40 Issue 3 Pg. 246-51 (Sep 2012) ISSN: 1872-7913 [Electronic] Netherlands
PMID22819149 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Chemical References
  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Proteome
  • Virulence Factors
  • Raloxifene Hydrochloride
  • Pyocyanine
Topics
  • Animals
  • Anti-Bacterial Agents (pharmacology)
  • Bacterial Proteins (analysis)
  • Caenorhabditis elegans (microbiology)
  • Proteome (analysis)
  • Pseudomonas aeruginosa (chemistry, drug effects, metabolism, pathogenicity)
  • Pyocyanine (metabolism)
  • Raloxifene Hydrochloride (pharmacology)
  • Survival Analysis
  • Virulence (drug effects)
  • Virulence Factors (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: