HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Dual targeting of the cyclin/Rb/E2F and mitochondrial pathways in mantle cell lymphoma with the translation inhibitor silvestrol.

AbstractPURPOSE:
During cell-cycle progression, D-cyclins activate cyclin-dependent kinases (CDKs) 4/6 to inactivate Rb, permitting E2F1-mediated S-phase gene transcription. This critical pathway is typically deregulated in cancer, and novel inhibitory strategies would be effective in a variety of tumors. The protein synthesis inhibitor silvestrol has potent activity in B-cell leukemias via the mitochondrial pathway of apoptosis, and also reduces cyclin D1 expression in breast cancer and lymphoma cell lines. We hypothesized that this dual activity of silvestrol would make it especially effective in malignancies driven by aberrant cyclin D1 expression.
EXPERIMENTAL DESIGN:
Mantle cell lymphoma (MCL), characterized by elevated cyclin D1, was used as a model to test this approach. The cyclin D/Rb/E2F1 pathway was investigated in vitro using MCL cell lines and primary tumor cells. Silvestrol was also evaluated in vivo using an aggressive model of MCL.
RESULTS:
Silvestrol showed low nanomolar potency both in MCL cell lines and primary MCL tumor cells. D-cyclins were depleted with just 10 nmol/L silvestrol at 16 hours, with subsequent reductions of phosphorylated Rb, E2F1 protein, and E2F1 target transcription. As showed in other leukemias, silvestrol caused Mcl-1 depletion followed by mitochondrial depolarization and caspase-dependent apoptosis, effects not related to inhibition of CDK4/6. Silvestrol significantly (P < 0.0001) prolonged survival in a MCL xenograft model without detectable toxicity.
CONCLUSIONS:
These data indicate that silvestrol effectively targets the cyclin/CDK/Rb pathway, and additionally induces cytotoxicity via intrinsic apoptosis. This dual activity may be an effective therapeutic strategy in MCL and other malignancies.
AuthorsLapo Alinari, Courtney J Prince, Ryan B Edwards, William H Towns, Rajeswaran Mani, Amy Lehman, Xiaoli Zhang, David Jarjoura, Li Pan, A Douglas Kinghorn, Michael R Grever, Robert A Baiocchi, David M Lucas
JournalClinical cancer research : an official journal of the American Association for Cancer Research (Clin Cancer Res) Vol. 18 Issue 17 Pg. 4600-11 (Sep 01 2012) ISSN: 1557-3265 [Electronic] United States
PMID22791882 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Copyright©2012 AACR.
Chemical References
  • E2F1 Transcription Factor
  • Retinoblastoma Protein
  • Triterpenes
  • silvestrol
  • Cyclin D1
Topics
  • Animals
  • Apoptosis (drug effects, genetics)
  • Cell Cycle (drug effects, genetics)
  • Cell Line, Tumor
  • Cyclin D1 (genetics, metabolism)
  • E2F1 Transcription Factor (genetics, metabolism)
  • Gene Expression Regulation, Neoplastic (drug effects)
  • Humans
  • Lymphoma, Mantle-Cell (genetics, metabolism, pathology, therapy)
  • Metabolic Networks and Pathways
  • Mice
  • Mitochondria (drug effects, metabolism)
  • Retinoblastoma Protein (genetics, metabolism)
  • Signal Transduction (drug effects)
  • Transplantation, Heterologous
  • Triterpenes (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: