HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The influence of resiniferatoxin on the chemical coding of neurons in dorsal root ganglia supplying the urinary bladder in the female pig.

Abstract
Although resiniferatoxin (RTX) becomes more often used in experimental therapies of sensory system disorders, so far there is no data concerning the influence of RTX on the chemical coding of neurons in dorsal root ganglia (DRG) supplying the urinary bladder in the pig, an animal species considered as a reliable animal model for investigation dealing with human lower urinary tract disorders. Retrograde tracer Fast Blue (FB) was injected into the wall of the right half of the urinary bladder in six juvenile female pigs, and three weeks later, bladder instillation of RTX (500 nmol per animal) was carried out in all the animals. After a week, DRGs were harvested from all the pigs and the neurochemical characterization of FB+ neurons was performed using routine single-immunofluorescence labeling technique on 10-microm-thick cryostat sections. RTX instillation resulted in a distinct decrease in the numbers of FB+ cells containing calcitonin gene-related peptide (CGRP), nitric oxide synthase (NOS), somatostatin (SOM) and calbindin (CB) when compared with those found in the healthy animals (18% vs. 36%, 1% vs. 6%, 0.8% vs. 4% and 0.5% vs. 3%, respectively), and an increase in the number of pituitary adenylate cyclase-activating polypeptide (PACAP)- and galanin (GAL)-immunoreactive (IR) nerve cells (51% vs. 26% and 47% vs. 6.5%). The results obtained suggest that RTX could be taken into consideration when the neuroactive agents are planned to be used in experimental therapies of selected neurogenic bladder illnesses.
AuthorsA Bossowska, M Majewski
JournalPolish journal of veterinary sciences (Pol J Vet Sci) Vol. 15 Issue 1 Pg. 135-42 ( 2012) ISSN: 1505-1773 [Print] Germany
PMID22708368 (Publication Type: Clinical Trial, Journal Article)
Chemical References
  • Diterpenes
  • Neurotoxins
  • resiniferatoxin
Topics
  • Animals
  • Diterpenes (pharmacology)
  • Female
  • Ganglia, Spinal (cytology)
  • Gene Expression Regulation (drug effects)
  • Neurons (drug effects)
  • Neurotoxins (pharmacology)
  • Swine (physiology)
  • Urinary Bladder (innervation)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: