HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

High-temperature measurements of the reactions of OH with a series of ketones: acetone, 2-butanone, 3-pentanone, and 2-pentanone.

Abstract
The overall rate constants for the reactions of hydroxyl radicals (OH) with a series of ketones, namely, acetone (CH(3)COCH(3)), 2-butanone (C(2)H(5)COCH(3)), 3-pentanone (C(2)H(5)COC(2)H(5)), and 2-pentanone (C(3)H(7)COCH(3)), were studied behind reflected shock waves over the temperature range of 870-1360 K at pressures of 1-2 atm. OH radicals were produced by rapid thermal decomposition of the OH precursor tert-butyl hydroperoxide (TBHP) and were monitored by the narrow line width ring dye laser absorption of the well-characterized R(1)(5) line in the OH A-X (0, 0) band near 306.69 nm. The overall rate constants were inferred by comparing the measured OH time histories with the simulated profiles from the detailed mechanisms of Pichon et al. (2009) and Serinyel et al. (2010). These measured values can be expressed in Arrhenius form as k(CH3COCH3+OH) = 3.30 × 10(13) exp(-2437/T) cm(3) mol(-1) s(-1), k(C2H5COCH3+OH )= 6.35 × 10(13) exp(-2270/T) cm(3) mol(-1) s(-1), k(C2H5COC2H5+OH) = 9.29 × 10(13) exp(-2361/T) cm(3) mol(-1) s(-1), and k(C3H7COCH3+OH) = 7.06 × 10(13) exp(-2020/T) cm(3) mol(-1) s(-1). The measured rate constant for the acetone + OH reaction from the current study is consistent with three previous experimental studies from Bott and Cohen (1991), Vasudevan et al. (2005), and Srinivasan et al. (2007), within ±20%. Here, we also present the first direct high-temperature rate constant measurements of 2-butanone + OH, 3-pentanone + OH, and 2-pentanone + OH reactions. The measured values for the 2-butanone + OH reaction are in close accord with the theoretical calculation from Zhou et al. (2011), and the measured values for the 3-pentanone + OH reaction are in excellent agreement with the estimates (by analogy with the H-atom abstraction rate constants from alkanes) from Serinyel et al. Finally, the structure-activity relationship from Kwok and Atkinson (1995) was used to estimate these four rate constants, and the estimated values from this group-additivity model show good agreement with the measurements (within ~25%) at the present experimental conditions.
AuthorsKing-Yiu Lam, David F Davidson, Ronald K Hanson
JournalThe journal of physical chemistry. A (J Phys Chem A) Vol. 116 Issue 23 Pg. 5549-59 (Jun 14 2012) ISSN: 1520-5215 [Electronic] United States
PMID22607582 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: