HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Signal enhancement in polysaccharide based sensors for infections by incorporation of chemically modified laccase.

Abstract
Bioresponsive polymers (BRPs) allow the detection of potentially pathogenic microorganisms. Here, peptidoglycan and cellulose based hydrogels were constructed with potential for diagnosis of wound infection or, for example, Aspergillosis, respectively. These systems respond to extracellular enzymes from microbes or enzymes secreted from the human immune system in case of infection. Laccases as 'enhanzymes' were incorporated into these devices for signal and stability enhancement when compared to simple dye release based systems. To retain the enhanzymes within the BRPs, they were either PEGylated laccase (Laccase_PEG) to increase size or methacrylated laccase (Laccase_MA) to allow covalent attachment to the polysaccharide matrices. PEGylation of Trametes hirsuta laccase led to a fivefold increase in size to 270kDa according to size exclusion chromatography (SEC). Likewise, successful methacrylation of the laccase was demonstrated by using reversed phase chromatography while SEC analysis proved covalent attachment of the enzyme to the methacrylated polysaccharide matrix. Upon incubation of peptidoglycan based BRPs with fluid from infected wounds, the difference to controls was four times higher for Laccase_PEG based signalling when compared to simple dye release. Similarly, the control signals (i.e. leaching) were considerably reduced in case of Laccase_MA incorporated in crosslinked peptidoglycan (PG) and carboxymethylcellulose (CMC) hydrogels for signalling. In addition, Laccase_MA catalysed colour formation enhanced the signal dramatically with factors between 100- and 600-fold. Laccase_MA was demonstrated to oxidise silica gel immobilised ferulic acid incorporated into the BRP with clearly visible colour changes of 4.5 ΔE units according the CIELab concept upon incubation by trigger enzymes as well as infected wound fluids.
AuthorsKonstantin P Schneider, Ulrike Gewessler, Teresa Flock, Andrea Heinzle, Verena Schenk, Franz Kaufmann, Eva Sigl, Georg M Guebitz
JournalNew biotechnology (N Biotechnol) Vol. 29 Issue 4 Pg. 502-9 (May 15 2012) ISSN: 1876-4347 [Electronic] Netherlands
PMID22445491 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2012 Elsevier B.V. All rights reserved.
Chemical References
  • Coumaric Acids
  • Hydrogels
  • Methacrylates
  • Peptidoglycan
  • Polysaccharides
  • Polyethylene Glycols
  • ferulic acid
  • Laccase
  • Carboxymethylcellulose Sodium
Topics
  • Biosensing Techniques
  • Carboxymethylcellulose Sodium (chemistry)
  • Coumaric Acids (chemistry, metabolism)
  • Humans
  • Hydrogels (chemistry)
  • Infections (diagnosis)
  • Laccase (chemistry, metabolism)
  • Methacrylates (chemistry)
  • Peptidoglycan (chemistry)
  • Polyethylene Glycols (chemistry)
  • Polysaccharides (chemistry)
  • Substrate Specificity

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: