Loss of miR-133a expression associated with poor survival of breast cancer and restoration of miR-133a expression inhibited breast cancer cell growth and invasion.

miRNAs, endogenous oligonucleotide RNAs, play an important role in mammary gland carcinogenesis and tumor progression. Detection of their expression and investigation of their functions could lead to discovery of novel biomarkers for breast cancer.
In situ hybridization was used to detect miR-133a expression in formalin-fixed paraffin-embedded breast surgical specimens from 26 benign, 34 pericancerously normal and 90 cancerous tissues. qRT-PCR was performed to assess miR-133a levels in 6 breast cell lines and 10 benign and 18 cancerous fresh breast tissue specimens. Cell viability, migration, and invasion assays were used to determine the role of miR-133a in regulation of breast cancer cell growth, migration, and invasion, respectively. Luciferase assay was performed to assess miR-133a binding to FSCN1 gene.
Expression of miR-133a was reduced from normal through benign to cancerous breast tissues. Expression of miR-133a was also low in breast cancer cell lines. The reduced miR-133a expression was associated with lymph nodes metastasis, high clinical stages, and shorter relapse-free survivals of patients with breast cancer. Furthermore, transfection of miR-133a oligonucleotides slightly inhibited growth but significantly decreased migration and invasion capacity of breast cancer cells, compared with negative controls, whereas knockdown of miR-133a expression induced breast cancer cell migration and invasion. In addition, we identified a putative miR-133a binding site in the 3'-untranslated region (UTR) of Fascin1 (FSCN1) gene using an online bioinformatical tool. We found that miR-133a transfection significantly reduced expression of FSCN1 mRNA and protein. The luciferase reporter assay confirmed that FSCN1 was the direct target gene of miR-133a.
miR-133a expression was lost in breast cancer tissues, loss of which was associated with lymph nodes metastasis, high clinical stages and shorter relapse-free survivals of patients with breast cancer. Functionally, miR-133a can suppress tumor cell invasion and migration and targeted the expression of FSCN1. Future study will verify whether detection of miR-133a expression can served as a novel biomarker for breast cancer progression and patient prognosis.
AuthorsZheng-sheng Wu, Chao-qun Wang, Ru Xiang, Xue Liu, Shan Ye, Xue-qing Yang, Gui-hong Zhang, Xiao-chun Xu, Tao Zhu, Qiang Wu
JournalBMC cancer (BMC Cancer) Vol. 12 Pg. 51 ( 2012) ISSN: 1471-2407 [Electronic] England
PMID22292984 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • MIRN133 microRNA, human
  • MicroRNAs
  • Neoplasm Proteins
  • Blotting, Western
  • Breast Neoplasms (genetics, metabolism, mortality, pathology)
  • Carcinoma (genetics, metabolism, mortality, pathology)
  • Cell Line, Tumor
  • Cell Movement (physiology)
  • Cell Proliferation
  • Cell Survival
  • Cohort Studies
  • Female
  • Humans
  • MicroRNAs (metabolism)
  • Neoplasm Invasiveness (genetics)
  • Neoplasm Proteins (metabolism)
  • Reverse Transcriptase Polymerase Chain Reaction
  • Survival Analysis

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!

Choose Username:
Verify Password: