HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures.

Abstract
Loss of Werner syndrome helicase-exonuclease (WRN) or of its homolog Bloom syndrome helicase (BLM) results in different inherited disorders. Whereas Werner syndrome is characterized by premature onset of aging and age-associated diseases, Bloom syndrome involves developmental abnormalities and increased predisposition to diverse malignancies. To identify biochemical differences between WRN and BLM that might contribute to the dissimilar outcomes of their loss, we compared their abilities to unwind and bind in vitro diverse DNA structures. Full-length recombinant WRN and BLM proteins expressed in and purified from Sf9 insect cells unwound to comparable extents and with similar K(m) values partial DNA duplex, splayed arm DNA and G'2 bimolecular quadruplex DNA. However, WRN resolved bubble DNA ∼25-fold more efficiently than BLM. The two enzymes were mainly distinguished by their contrasting abilities to bind DNA. WRN bound partial duplexes, bubble and splayed arm DNA and G'2 bimolecular and G4 four-molecular quadruplexes with dissociation constants of 0.25 to 25 nM. By contrast, BLM formed substantial complexes with only G4 quadruplex DNA while binding only marginally other DNA structures. We raise the possibility that in addition to its enzymatic activities WRN may act as a scaffold for the assembly on DNA of additional DNA processing proteins.
AuthorsAshwini Kamath-Loeb, Lawrence A Loeb, Michael Fry
JournalPloS one (PLoS One) Vol. 7 Issue 1 Pg. e30189 ( 2012) ISSN: 1932-6203 [Electronic] United States
PMID22272300 (Publication Type: Journal Article, Research Support, American Recovery and Reinvestment Act, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Recombinant Proteins
  • DNA
  • Exodeoxyribonucleases
  • Bloom syndrome protein
  • RecQ Helicases
  • WRN protein, human
  • Werner Syndrome Helicase
Topics
  • Animals
  • Base Sequence
  • Binding, Competitive
  • Cell Line
  • DNA (chemistry, genetics, metabolism)
  • Exodeoxyribonucleases (genetics, metabolism)
  • G-Quadruplexes
  • Humans
  • Kinetics
  • Molecular Sequence Data
  • Nucleic Acid Conformation
  • Protein Binding
  • RecQ Helicases (genetics, metabolism)
  • Recombinant Proteins (metabolism)
  • Spodoptera
  • Substrate Specificity
  • Werner Syndrome Helicase

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: