HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Endothelial-monocyte activating polypeptide II disrupts alveolar epithelial type II to type I cell transdifferentiation.

AbstractBACKGROUND:
Distal alveolar morphogenesis is marked by differentiation of alveolar type (AT)-II to AT-I cells that give rise to the primary site of gas exchange, the alveolar/vascular interface. Endothelial-Monocyte Activating Polypeptide (EMAP) II, an endogenous protein with anti-angiogenic properties, profoundly disrupts distal lung neovascularization and alveolar formation during lung morphogenesis, and is robustly expressed in the dysplastic alveolar regions of infants with Bronchopulmonary dysplasia. Determination as to whether EMAP II has a direct or indirect affect on ATII → ATI trans-differentiation has not been explored.
METHOD:
In a controlled nonvascular environment, an in vitro model of ATII → ATI cell trans-differentiation was utilized to demonstrate the contribution that one vascular mediator has on distal epithelial cell differentiation.
RESULTS:
Here, we show that EMAP II significantly blocked ATII → ATI cell transdifferentiation by increasing cellular apoptosis and inhibiting expression of ATI markers. Moreover, EMAP II-treated ATII cells displayed myofibroblast characteristics, including elevated cellular proliferation, increased actin cytoskeleton stress fibers and Rho-GTPase activity, and increased nuclear:cytoplasmic volume. However, EMAP II-treated cells did not express the myofibroblast markers desmin or αSMA.
CONCLUSION:
Our findings demonstrate that EMAP II interferes with ATII → ATI transdifferentiation resulting in a proliferating non-myofibroblast cell. These data identify the transdifferentiating alveolar cell as a possible target for EMAP II's induction of alveolar dysplasia.
AuthorsYao Chen, Susan K Legan, Anne Mahan, Janet Thornton, Haiming Xu, Margaret A Schwarz
JournalRespiratory research (Respir Res) Vol. 13 Pg. 1 (Jan 03 2012) ISSN: 1465-993X [Electronic] England
PMID22214516 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Biomarkers
  • Cytokines
  • Neoplasm Proteins
  • RNA-Binding Proteins
  • small inducible cytokine subfamily E, member 1
  • rho GTP-Binding Proteins
Topics
  • Animals
  • Apoptosis (drug effects, physiology)
  • Biomarkers (metabolism)
  • Cell Proliferation (drug effects)
  • Cell Transdifferentiation
  • Cells, Cultured
  • Cytokines (pharmacology, physiology)
  • Male
  • Morphogenesis (drug effects, physiology)
  • Myofibroblasts (drug effects, metabolism, physiology)
  • Neoplasm Proteins (pharmacology, physiology)
  • Pulmonary Alveoli (drug effects, metabolism, physiology)
  • RNA-Binding Proteins (pharmacology, physiology)
  • Rats
  • Rats, Sprague-Dawley
  • Stress Fibers (metabolism)
  • rho GTP-Binding Proteins (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: