HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cardiac assist with a twist: apical torsion as a means to improve failing heart function.

Abstract
Changes in muscle fiber orientation across the wall of the left ventricle (LV) cause the apex of the heart to turn 10-15 deg in opposition to its base during systole and are believed to increase stroke volume and lower wall stress in healthy hearts. Studies show that cardiac torsion is sensitive to various disease states, which suggests that it may be an important aspect of cardiac function. Modern imaging techniques have sparked renewed interest in cardiac torsion dynamics, but no work has been done to determine whether mechanically augmented apical torsion can be used to restore function to failing hearts. In this report, we discuss the potential advantages of this approach and present evidence that turning the cardiac apex by mechanical means can displace a clinically significant volume of blood from failing hearts. Computational models of normal and reduced-function LVs were created to predict the effects of applied apical torsion on ventricular stroke work and wall stress. These same conditions were reproduced in anesthetized pigs with drug-induced heart failure using a custom apical torsion device programmed to rotate over various angles during cardiac systole. Simulations of applied 90 deg torsion in a prolate spheroidal computational model of a reduced-function pig heart produced significant increases in stroke work (25%) and stroke volume with reduced fiber stress in the epicardial region. These calculations were in substantial agreement with corresponding in vivo measurements. Specifically, the computer model predicted torsion-induced stroke volume increases from 13.1 to 14.4 mL (9.9%) while actual stroke volume in a pig heart of similar size and degree of dysfunction increased from 11.1 to 13.0 mL (17.1%). Likewise, peak LV pressures in the computer model rose from 85 to 95 mm Hg (11.7%) with torsion while maximum ventricular pressures in vivo increased in similar proportion, from 55 to 61 mm Hg (10.9%). These data suggest that: (a) the computer model of apical torsion developed for this work is a fair and accurate predictor of experimental outcomes, and (b) supra-physiologic apical torsion may be a viable means to boost cardiac output while avoiding blood contact that occurs with other assist methods.
AuthorsDennnis R Trumble, Walter E McGregor, Roy C P Kerckhoffs, Lewis K Waldman
JournalJournal of biomechanical engineering (J Biomech Eng) Vol. 133 Issue 10 Pg. 101003 (Oct 2011) ISSN: 1528-8951 [Electronic] United States
PMID22070328 (Publication Type: Journal Article)
Topics
  • Animals
  • Cardiac Output (physiology)
  • Computer Simulation
  • Heart (physiopathology)
  • Heart Failure (therapy)
  • Heart Ventricles (pathology)
  • Models, Cardiovascular
  • Myocardial Contraction (physiology)
  • Rotation
  • Stroke Volume (physiology)
  • Swine
  • Systole (physiology)
  • Torsion, Mechanical
  • Ventricular Dysfunction, Left (therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: