HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Estimation of the postmortem duration of mouse tissue by electron spin resonance spectroscopy.

Abstract
Electron spin resonance (ESR) method is a simple method for detecting various free radicals simultaneously and directly. However, ESR spin trap method is unsuited to analyze weak ESR signals in organs because of water-induced dielectric loss (WIDL). To minimize WIDL occurring in biotissues and to improve detection sensitivity to free radicals in tissues, ESR cuvette was modified and used with 5,5-dimethtyl-1-pyrroline N-oxide (DMPO). The tissue samples were mouse brain, hart, lung, liver, kidney, pancreas, muscle, skin, and whole blood, where various ESR spin adduct signals including DMPO-ascorbyl radical (AsA(∗)), DMPO-superoxide anion radical (OOH), and DMPO-hydrogen radical (H) signal were detected. Postmortem changes in DMPO-AsA(∗) and DMPO-OOH were observed in various tissues of mouse. The signal peak of spin adduct was monitored until the 205th day postmortem. DMPO-AsA(∗) in liver (y = 113.8-40.7 log (day), R1 = -0.779, R2 = 0.6, P < .001) was found to linearly decrease with the logarithm of postmortem duration days. Therefore, DMPO-AsA(∗) signal may be suitable for detecting an oxidation stress tracer from tissue in comparison with other spin adduct signal on ESR spin trap method.
AuthorsShinobu Ito, Tomohisa Mori, Hideko Kanazawa, Toshiko Sawaguchi
JournalJournal of toxicology (J Toxicol) Vol. 2011 Pg. 973172 ( 2011) ISSN: 1687-8205 [Electronic] Egypt
PMID21776268 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: