HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein.

Abstract
Colorectal cancer is one of the most common cancers worldwide. Butyrate (BT) plays a key role in colonic epithelium homeostasis. The aim of this work was to investigate the possibility of BT being transported by P-glycoprotein (MDR1), multidrug resistance proteins (MRPs), or breast cancer resistance protein (BCRP). Uptake and efflux of (14)C-BT and (3)H-folic acid were measured in Caco-2, IEC-6, and MDA-MB-231 cell lines. mRNA expression of BCRP was detected by RT-PCR. Cell viability, proliferation, and differentiation were quantified with the lactate dehydrogenase, sulforhodamine B, and alkaline phosphatase activity assays, respectively. In both IEC-6 cells and Caco-2 cells, no evidence was found for the involvement of either MDR1 or MRPs in (14)C-BT efflux from the cells. In contrast, several lines of evidence support the conclusion that BT is a substrate of both rat and human BCRP. Indeed, BCRP inhibitors reduced (14)C-BT efflux in IEC-6 cells, both BT and BCRP inhibitors significantly decreased the efflux of the known BCRP substrate (3)H-folic acid in IEC-6 cells, and BCRP inhibitors reduced (14)C-BT efflux in the BCRP-expressing MDA-MB-231 cell line. In IEC-6 cells, combination of BT with a BCRP inhibitor significantly potentiated the effect of BT on cell proliferation. The results of this study, showing for the first time that BT is a BCRP substrate, are very important in the context of the high levels of BCRP expression in the human colon and the anticarcinogenic and anti-inflammatory role of BT at that level. So, interaction of BT with BCRP and with other BCRP substrates/inhibitors is clearly of major importance.
AuthorsPedro Gonçalves, Inês Gregório, Fátima Martel
JournalAmerican journal of physiology. Cell physiology (Am J Physiol Cell Physiol) Vol. 301 Issue 5 Pg. C984-94 (Nov 2011) ISSN: 1522-1563 [Electronic] United States
PMID21775706 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • ABCB1 protein, human
  • ABCG2 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters
  • Abcg2 protein, rat
  • Neoplasm Proteins
Topics
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 (metabolism)
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters (metabolism)
  • Animals
  • Breast Neoplasms (metabolism)
  • Caco-2 Cells
  • Cell Differentiation
  • Cell Line, Tumor
  • Cell Proliferation
  • Cell Survival
  • Colorectal Neoplasms (metabolism)
  • Female
  • Humans
  • Neoplasm Proteins (metabolism)
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: