HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A clopidogrel-insensitive inducible pool of P2Y12 receptors contributes to thrombus formation: inhibition by elinogrel, a direct-acting, reversible P2Y12 antagonist.

Abstract
It is known that hepatic metabolism limits the antiaggregatory activity of clopidogrel and, as a consequence, its clinical benefits. In this study, we investigated whether other factors exist that could account for clopidogrel's suboptimal antithrombotic activity. Using an in vivo murine FeCl(3) thrombosis model coupled with intravital microscopy, we found that at equivalent, maximal levels of inhibition of ADP-induced platelet aggregation, clopidogrel (50 mg/kg p.o.) failed to reproduce the phenotype associated with P2Y(12) deficiency. However, elinogrel (60 mg/kg p.o.), a direct-acting reversible P2Y(12) antagonist, achieved maximal levels of inhibition in vivo, and its administration (1 mg/kg i.v.) abolished residual thrombosis associated with clopidogrel dosing. Because elinogrel is constantly present in the plasma, whereas the active metabolite of clopidogrel exists for ∼2 h, we evaluated whether an intracellular pool of P2Y(12) exists that would be inaccessible to clopidogrel and contribute to its limited antithrombotic activity. Using saturation [(3)H]2-(methylthio)ADP ([(3)H]2MeSADP) binding studies, we first demonstrated that platelet stimulation with thrombin and convulxin (mouse) and thrombin receptor activating peptide (TRAP) (human) significantly increased surface expression of P2Y(12) relative to that of resting platelets. We next found that clopidogrel dose-dependently inhibited ADP-induced aggregation, signaling (cAMP), and surface P2Y(12) on resting mouse platelets, achieving complete inhibition at the highest dose (50 mg/kg), but failed to block this inducible pool. Thus, an inducible pool of P2Y(12) exists on platelets that can be exposed upon platelet activation by strong agonists. This inducible pool is not blocked completely by clopidogrel, contributes to thrombosis in vivo, and can be blocked by elinogrel.
AuthorsHelena Haberstock-Debic, Patrick Andre, Scott Mills, David R Phillips, Pamela B Conley
JournalThe Journal of pharmacology and experimental therapeutics (J Pharmacol Exp Ther) Vol. 339 Issue 1 Pg. 54-61 (Oct 2011) ISSN: 1521-0103 [Electronic] United States
PMID21730013 (Publication Type: Journal Article)
Chemical References
  • Fibrinolytic Agents
  • P-Selectin
  • Platelet Aggregation Inhibitors
  • Purinergic P2Y Receptor Agonists
  • Purinergic P2Y Receptor Antagonists
  • Quinazolinones
  • Receptors, Purinergic P2Y12
  • Sulfonamides
  • elinogrel
  • Clopidogrel
  • Cyclic AMP
  • Ticlopidine
Topics
  • Animals
  • Clopidogrel
  • Cyclic AMP (blood)
  • Fibrinolytic Agents (pharmacology)
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • P-Selectin (metabolism)
  • Platelet Aggregation (drug effects)
  • Platelet Aggregation Inhibitors (pharmacology)
  • Purinergic P2Y Receptor Agonists (pharmacology)
  • Purinergic P2Y Receptor Antagonists (pharmacology)
  • Quinazolinones (pharmacology)
  • Radioligand Assay
  • Receptors, Purinergic P2Y12 (genetics, physiology)
  • Sulfonamides (pharmacology)
  • Thrombosis (chemically induced, prevention & control)
  • Ticlopidine (analogs & derivatives, pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: