HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Principles of strategic drug delivery to the brain (SDDB): development of anorectic and orexigenic analogs of leptin.

Abstract
The blood-brain barrier (BBB) presents a tremendous challenge for the delivery of drugs to the central nervous system (CNS). This includes drugs that target brain receptors for the treatment of obesity and anorexia. Strategic drug delivery to brain (SDDB) is an approach that considers in depth the relations among the BBB, the candidate therapeutic, the CNS target, and the disease state to be treated. Here, we illustrate principles of SDDB with two different approaches to developing drugs based on leptin. In normal body weight humans and in non-obese rodents, leptin is readily transported across the BBB and into the CNS where it inhibits feeding and enhances thermogenesis. However, in obesity, the transport of leptin across the BBB is impaired, resulting in a resistance to leptin. As a result, it is difficult to treat obesity with leptin or its analogs that depend on the leptin transporter for access to the CNS. To treat obesity, we developed a leptin agonist modified by the addition of pluronic block copolymers (P85-leptin). P85-leptin retains biological activity and is capable of crossing the BBB by a mechanism that is not dependent on the leptin transporter. As such, P85-leptin is able to cross the BBB of obese mice at a rate similar to that of native leptin in lean mice. To treat anorexia, we developed a leptin antagonist modified by pegylation (PEG-MLA) that acts primarily by blocking the BBB transporter for endogenous, circulating leptin. This prevents blood-borne, endogenous leptin from entering the CNS, essentially mimicking the leptin resistance seen in obesity, and resulting in a significant increase in adiposity. These examples illustrate two strategies in which an understanding of the interactions among the BBB, CNS targets, and candidate therapeutics under physiologic and diseased conditions can be used to develop drugs effective for the treatment of brain disease.
AuthorsW A Banks, A Gertler, G Solomon, L Niv-Spector, M Shpilman, X Yi, E Batrakova, S Vinogradov, A V Kabanov
JournalPhysiology & behavior (Physiol Behav) Vol. 105 Issue 1 Pg. 145-9 (Nov 30 2011) ISSN: 1873-507X [Electronic] United States
PMID21669216 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review)
CopyrightCopyright © 2011. Published by Elsevier Inc.
Chemical References
  • Leptin
Topics
  • Animals
  • Blood-Brain Barrier (metabolism)
  • Brain (metabolism)
  • Drug Delivery Systems (methods)
  • Drug Design
  • Leptin (administration & dosage, analogs & derivatives)
  • Mice

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: