HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Methyleugenol genotoxicity in the Fischer 344 rat using the comet assay and pathway-focused gene expression profiling.

Abstract
Methyleugenol (MEG), a constituent of human food, induces malignant tumors in multiple tissues of rats and mice. Although MEG forms DNA adducts and induces unscheduled DNA synthesis in rat liver, it is negative in many in vitro genetic toxicity assays. In the present study, we evaluated MEG-induced DNA damage in the rat using (1) the alkaline Comet assay, (2) the oxidative Comet assay, and (3) expression profiling of genes associated with DNA damage pathways. Male F344 rats received single oral doses of 400 or 1000 mg/kg body weight (bw) MEG and DNA damage was assessed by the Comet assay in liver, bladder, bone marrow, kidney, and lung 3 h and 24 h later. MEG failed to produce any increase in DNA damage. In addition, rats were given a single oral dose of 2000 mg/kg bw MEG, and Comet assays were performed with liver, bone marrow, and bladder 1, 3, 6, and 8 h later. With one exception (bone marrow at 8 h), no DNA damage was detected. Enzyme-modified Comet assays were conducted in parallel with standard Comet assays in liver. Whereas no MEG-induced DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in increases in DNA damage at the 6- and 8-h sampling times. Gene expression analysis on the livers from MEG-exposed rats showed significant reduction in genes associated with DNA repair. The results indicate that MEG induces DNA damage in rat liver and that oxidative DNA damages may be partly responsible for the genotoxicity of MEG in rodents.
AuthorsWei Ding, Dan D Levy, Michelle E Bishop, E Lyn-Cook Lascelles, Rohan Kulkarni, Ching-We Chang, Anane Aidoo, Mugimane G Manjanatha
JournalToxicological sciences : an official journal of the Society of Toxicology (Toxicol Sci) Vol. 123 Issue 1 Pg. 103-12 (Sep 2011) ISSN: 1096-0929 [Electronic] United States
PMID21659616 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Mutagens
  • methyleugenol
  • Eugenol
  • DNA
  • Deoxyribonucleases, Type III Site-Specific
Topics
  • Animals
  • Bone Marrow Cells (drug effects)
  • Comet Assay
  • DNA (drug effects)
  • DNA Damage
  • DNA Repair (drug effects, genetics)
  • Deoxyribonucleases, Type III Site-Specific (genetics, metabolism)
  • Eugenol (analogs & derivatives, classification, toxicity)
  • Gene Expression Profiling
  • Gene Expression Regulation (drug effects)
  • Liver (drug effects)
  • Male
  • Mutagens (classification, toxicity)
  • Oxidation-Reduction
  • Rats
  • Rats, Inbred F344
  • Urinary Bladder (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: