HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Proteomics: a subcellular look at spermatozoa.

AbstractBACKGROUND:
Male-factor infertility presents a vexing problem for many reproductively active couples. Many studies have focused on abnormal sperm parameters. Recent advances in proteomic techniques, especially in mass spectrometry, have aided in the study of sperm and more specifically, sperm proteins. The aim of this study was to review the current literature on the various proteomic techniques, and their usefulness in diagnosing sperm dysfunction and potential applications in the clinical setting.
METHODS:
Review of PubMed database. Key words: spermatozoa, proteomics, protein, proteome, 2D-PAGE, mass spectrometry.
RESULTS:
Recently employed proteomic methods, such as two-dimensional polyacrylamide gel electrophoresis, mass spectrometry, and differential in gel electrophoresis, have identified numerous sperm-specific proteins. They also have provided a further understanding of protein function involved in sperm processes and for the differentiation between normal and abnormal states. In addition, studies on the sperm proteome have demonstrated the importance of post-translational modifications, and their ability to bring about physiological changes in sperm function. No longer do researchers believe that in order for them to elucidate the biochemical functions of genes, mere knowledge of the human genome sequence is sufficient. Moreover, a greater understanding of the physiological function of every protein in the tissue-specific proteome is essential in order to unravel the biological display of the human genome.
CONCLUSION:
Recent advances in proteomic techniques have provided insight into sperm function and dysfunction. Several multidimensional separation techniques can be utilized to identify and characterize spermatozoa. Future developments in bioinformatics can further assist researchers in understanding the vast amount of data collected in proteomic studies. Moreover, such advances in proteomics may help to decipher metabolites which can act as biomarkers in the detection of sperm impairments and to potentially develop treatment for infertile couples.Further comprehensive studies on sperm-specific proteome, mechanisms of protein function and its proteolytic regulation, biomarkers and functional pathways, such as oxidative-stress induced mechanisms, will provide better insight into physiological functions of the spermatozoa. Large-scale proteomic studies using purified protein assays will eventually lead to the development of novel biomarkers that may allow for detection of disease states, genetic abnormalities, and risk factors for male infertility. Ultimately, these biomarkers will allow for a better diagnosis of sperm dysfunction and aid in drug development.
AuthorsStefan S du Plessis, Anthony H Kashou, David J Benjamin, Satya P Yadav, Ashok Agarwal
JournalReproductive biology and endocrinology : RB&E (Reprod Biol Endocrinol) Vol. 9 Pg. 36 (Mar 22 2011) ISSN: 1477-7827 [Electronic] England
PMID21426553 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Chemical References
  • Proteins
Topics
  • Electrophoresis, Gel, Two-Dimensional
  • Humans
  • Infertility, Male (etiology)
  • Male
  • Mass Spectrometry
  • Proteins (analysis)
  • Proteomics (methods)
  • Spermatogenesis (physiology)
  • Spermatozoa (chemistry, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: