HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Nucleotide excision repair proteins rapidly accumulate but fail to persist in human XP-E (DDB2 mutant) cells.

Abstract
The xeroderma pigmentosum (XP-E) DNA damage binding protein (DDB2) is involved in early recognition of global genome DNA damage during DNA nucleotide excision repair (NER). We found that skin fibroblasts from four newly reported XP-E patients with numerous skin cancers and DDB2 mutations had slow repair of 6-4 photoproducts (6-4PP) and markedly reduced repair of cyclobutane pyrimidine dimers (CPD). NER proteins (XPC, XPB, XPG, XPA and XPF) colocalized to CPD and 6-4PP positive regions immediately (<0.1 h) after localized UV irradiation in cells from the XP-E patients and normal controls. While these proteins persist in normal cells, surprisingly, within 0.5 h these repair proteins were no longer detectable at the sites of DNA damage in XP-E cells. Our results indicate that DDB2 is not required for the rapid recruitment of NER proteins to sites of UV photoproducts or for partial repair of 6-4PP but is essential for normal persistence of these proteins for CPD photoproduct removal.
AuthorsKyu-Seon Oh, Kyoko Imoto, Steffen Emmert, Deborah Tamura, John J DiGiovanna, Kenneth H Kraemer
JournalPhotochemistry and photobiology (Photochem Photobiol) 2011 May-Jun Vol. 87 Issue 3 Pg. 729-33 ISSN: 1751-1097 [Electronic] United States
PMID21388382 (Publication Type: Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't)
Copyright© 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Chemical References
  • DDB2 protein, human
  • DNA-Binding Proteins
  • Pyrimidine Dimers
  • DNA
Topics
  • Cell Culture Techniques
  • DNA
  • DNA Damage
  • DNA Repair (genetics, radiation effects)
  • DNA-Binding Proteins (genetics, metabolism)
  • Fibroblasts (metabolism, pathology, radiation effects)
  • Humans
  • Mutation
  • Photolysis (radiation effects)
  • Pyrimidine Dimers (genetics, metabolism)
  • Skin Neoplasms (genetics, metabolism)
  • Ultraviolet Rays
  • Xeroderma Pigmentosum

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: