HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans.

Abstract
Mutations in growth signaling pathways extend life span, as well as protect against age-dependent DNA damage in yeast and decrease insulin resistance and cancer in mice. To test their effect in humans, we monitored for 22 years Ecuadorian individuals who carry mutations in the growth hormone receptor (GHR) gene that lead to severe GHR and IGF-1 (insulin-like growth factor-1) deficiencies. We combined this information with surveys to identify the cause and age of death for individuals in this community who died before this period. The individuals with GHR deficiency exhibited only one nonlethal malignancy and no cases of diabetes, in contrast to a prevalence of 17% for cancer and 5% for diabetes in control subjects. A possible explanation for the very low incidence of cancer was suggested by in vitro studies: Serum from subjects with GHR deficiency reduced DNA breaks but increased apoptosis in human mammary epithelial cells treated with hydrogen peroxide. Serum from GHR-deficient subjects also caused reduced expression of RAS, PKA (protein kinase A), and TOR (target of rapamycin) and up-regulation of SOD2 (superoxide dismutase 2) in treated cells, changes that promote cellular protection and life-span extension in model organisms. We also observed reduced insulin concentrations (1.4 μU/ml versus 4.4 μU/ml in unaffected relatives) and a very low HOMA-IR (homeostatic model assessment-insulin resistance) index (0.34 versus 0.96 in unaffected relatives) in individuals with GHR deficiency, indicating higher insulin sensitivity, which could explain the absence of diabetes in these subjects. These results provide evidence for a role of evolutionarily conserved pathways in the control of aging and disease burden in humans.
AuthorsJaime Guevara-Aguirre, Priya Balasubramanian, Marco Guevara-Aguirre, Min Wei, Federica Madia, Chia-Wei Cheng, David Hwang, Alejandro Martin-Montalvo, Jannette Saavedra, Sue Ingles, Rafael de Cabo, Pinchas Cohen, Valter D Longo
JournalScience translational medicine (Sci Transl Med) Vol. 3 Issue 70 Pg. 70ra13 (Feb 16 2011) ISSN: 1946-6242 [Electronic] United States
PMID21325617 (Publication Type: Journal Article)
Chemical References
  • Receptors, Somatotropin
  • Hydrogen Peroxide
Topics
  • Adult
  • Aging (physiology)
  • Apoptosis (drug effects, genetics)
  • Cells, Cultured
  • Cohort Studies
  • DNA Breaks (drug effects)
  • Diabetes Mellitus (blood, epidemiology, metabolism)
  • Female
  • Genotype
  • Humans
  • Hydrogen Peroxide (pharmacology)
  • Male
  • Middle Aged
  • Neoplasms (blood, epidemiology, metabolism)
  • Receptors, Somatotropin (deficiency, genetics)
  • Signal Transduction (genetics)
  • Young Adult

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: