HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure.

AbstractRATIONALE:
Mitochondrial dysfunction has been implicated in several cardiovascular diseases; however, the roles of mitochondrial oxidative stress and DNA damage in hypertensive cardiomyopathy are not well understood.
OBJECTIVE:
We evaluated the contribution of mitochondrial reactive oxygen species (ROS) to cardiac hypertrophy and failure by using genetic mouse models overexpressing catalase targeted to mitochondria and to peroxisomes.
METHODS AND RESULTS:
Angiotensin II increases mitochondrial ROS in cardiomyocytes, concomitant with increased mitochondrial protein carbonyls, mitochondrial DNA deletions, increased autophagy and signaling for mitochondrial biogenesis in hearts of angiotensin II-treated mice. The causal role of mitochondrial ROS in angiotensin II-induced cardiomyopathy is shown by the observation that mice that overexpress catalase targeted to mitochondria, but not mice that overexpress wild-type peroxisomal catalase, are resistant to cardiac hypertrophy, fibrosis and mitochondrial damage induced by angiotensin II, as well as heart failure induced by overexpression of Gαq. Furthermore, primary damage to mitochondrial DNA, induced by zidovudine administration or homozygous mutation of mitochondrial polymerase γ, is also shown to contribute directly to the development of cardiac hypertrophy, fibrosis and failure.
CONCLUSIONS:
These data indicate the critical role of mitochondrial ROS in cardiac hypertrophy and failure and support the potential use of mitochondrial-targeted antioxidants for prevention and treatment of hypertensive cardiomyopathy.
AuthorsDao-Fu Dai, Simon C Johnson, Jason J Villarin, Michael T Chin, Madeline Nieves-Cintrón, Tony Chen, David J Marcinek, Gerald W Dorn 2nd, Y James Kang, Tomas A Prolla, Luis F Santana, Peter S Rabinovitch
JournalCirculation research (Circ Res) Vol. 108 Issue 7 Pg. 837-46 (Apr 01 2011) ISSN: 1524-4571 [Electronic] United States
PMID21311045 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • DNA, Mitochondrial
  • Reactive Oxygen Species
  • Reverse Transcriptase Inhibitors
  • Angiotensin II
  • Zidovudine
  • Catalase
  • GTP-Binding Protein alpha Subunits, Gq-G11
Topics
  • Angiotensin II (adverse effects, pharmacology)
  • Animals
  • Cardiomegaly (chemically induced, physiopathology)
  • Catalase (genetics, metabolism)
  • DNA Damage (physiology)
  • DNA, Mitochondrial (drug effects)
  • GTP-Binding Protein alpha Subunits, Gq-G11 (genetics, metabolism)
  • Gene Expression Regulation (drug effects)
  • Heart Failure (metabolism, physiopathology)
  • Mice
  • Mice, Transgenic
  • Mitochondria, Heart (physiology)
  • Models, Animal
  • Myocytes, Cardiac (metabolism)
  • Oxidative Stress (physiology)
  • Reactive Oxygen Species (metabolism)
  • Reverse Transcriptase Inhibitors (pharmacology)
  • Zidovudine (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: