HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cartilage ultrastructure in proteoglycan-deficient zebrafish mutants brings to light new candidate genes for human skeletal disorders.

Abstract
Proteoglycans are molecules consisting of protein cores onto which sugar chains, i.e., glycosaminoglycans (GAGs) such as heparan or chondroitin sulphates, are attached. Proteoglycans are produced by nearly all cells, and once secreted they become a major component of the extracellular matrix. Cartilage is particularly rich in proteoglycans, and changes in the structure and composition of GAGs have been found in osteochondromas and osteoarthritis. The zebrafish (Danio rerio) exhibits fast development, a growth plate-like organization of its craniofacial skeleton and an availability of various mutants, making it a powerful model for the study of human skeletal disorders with unknown aetiology. We analysed skeletons from five zebrafish lines with known mutations in genes involved in proteoglycan synthesis: dackel (dak/ext2), lacking heparan sulphate; hi307 (β3gat3), deficient for most GAGs; pinscher (pic/slc35b2), presenting defective sulphation of GAGs and other molecules; hi954 (uxs1), lacking Notch and most GAGs due to impaired protein xylosylation; and knypek (kny/gpc4), missing the protein core of the Glypican-4 proteoglycan. Here we show that each mutant displays different phenotypes related to: (a) cartilage morphology; (b) composition of the extracellular matrix; (c) ultrastructure of the extracellular matrix; and (d) the intracellular ultrastructure of chondrocytes, proving that sulphated GAGs orchestrate the cartilage intra- and extracellular ultrastructures. The mild phenotype of the hi307 mutant suggests that proteoglycans consisting of a protein core and a short sugar linker might suffice for proper chondrocyte stacking. Finally, knypek supports the involvement of Glypican-4 in the craniofacial phenotype of Simpson-Golabi-Behmel syndrome and suggests GPC4 as a modulator of the overgrowth phenotype that is associated with this syndrome and is primarily caused by a mutation in GPC3. Moreover, we speculate on the potential involvement of SLC35B2, β3GAT3 and UXS1 in skeletal dysplasias. This work promotes the use of zebrafish as a model of human skeletal development and associated pathologies.
AuthorsMalgorzata I Wiweger, Cristina M Avramut, Carlos E de Andrea, Frans A Prins, Abraham J Koster, Raimond B G Ravelli, Pancras C W Hogendoorn
JournalThe Journal of pathology (J Pathol) Vol. 223 Issue 4 Pg. 531-42 (Mar 2011) ISSN: 1096-9896 [Electronic] England
PMID21294126 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Chemical References
  • Glycosaminoglycans
  • Proteoglycans
  • A73025
Topics
  • Animals
  • Bone Diseases, Developmental (genetics, metabolism, pathology)
  • Cartilage (metabolism, ultrastructure)
  • Cell Membrane (ultrastructure)
  • Chondrocytes (ultrastructure)
  • Disease Models, Animal
  • Extracellular Matrix (metabolism, ultrastructure)
  • Genetic Association Studies
  • Glycosaminoglycans (analysis)
  • Inclusion Bodies (ultrastructure)
  • Intercellular Junctions (ultrastructure)
  • Microscopy, Electron
  • Osteogenesis (genetics)
  • Proteoglycans (deficiency)
  • Zebrafish

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: