HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The biological characterization of (99m)Tc-BnAO-NI as a SPECT probe for imaging hypoxia in a sarcoma-bearing mouse model.

AbstractOBJECTIVES:
Tumor growth beyond the region where vascular oxygen can reach creates a hypoxic domain. In this study, BnAO, a ligand that had been labeled with (99m)Tc-pertechnetate for hypoxia imaging, was conjugated with 2-nitroimidazole to give 3,3,10,10-tetramethyl-1-(2-nitro-1H-imidazo-1-y1)-4,9-diazadodecane-2,11- dionedioxime (BnAO-NI) as a potential ligand for hypoxia detection. Pentoxifylline is a peripheral vasodilator and has been used as a radiosensitizer in tumor radiotherapy. (99m)Tc-BnAO-NI/SPECT was applied to noninvasively assess the pharmacological effect of pentoxifylline in reducing tumor hypoxia in vivo.
METHODS:
BnAO-NI was synthesized and formulated with methylene diphosphonate (MDP), stannous chloride and carbonate buffer to afford kits. After mixing with (99m)Tc-pertechnetate, (99m)Tc-BnAO-NI injection can be readily prepared. The partition coefficient, radiochemical purity and in vitro stability were determined. Cellular uptake of radiotracers in KHT cells under hypoxia was conducted in a CO(2) incubator at 37°C under hypoxia or normoxia. A biodistribution study after intravenous injection of (99m)Tc-BnAO-NI in KHT sarcoma-implanted C3H mice was performed. The effect of pentoxifylline (100 mg/kg) on reducing tumor hypoxia was also studied.
RESULTS:
The radiochemical purity (RCP) of the (99m)Tc-BnAO-NI preparation was greater than 96% and stable at ambient temperature for 24h (RCP>90%). The accumulation of (99m)Tc-BnAO-NI and (99m)Tc-BnAO in KHT cells under hypoxia were 3.57 and 4.13-fold higher than those under normoxic environment, indicating unambiguous oxygen-dependent uptakes of these two probes. The distribution of (99m)Tc-BnAO-NI in KHT sarcoma-bearing mice revealed rapid clearance from the blood circulation. The tumor uptake peaked at 2h post-injection (0.32 ± 0.05%ID/g) with tumor-to-blood and tumor-to-muscle ratios of 10.32 and 3.96, respectively. The effect of pentoxifylline on the tumor blood perfusion was obvious. The tumor-to-muscle ratios at 2h post-injection of (99m)Tc-BnAO-NI with and without pentoxifylline pretreatment were 1.67 ± 0.38 and 2.59 ± 0.25, respectively (p = 0.025, n = 3).
CONCLUSION:
This study demonstrates that (99m)Tc-BnAO-NI is a hypoxia-sensitive radio probe for monitoring hypoxic regions in a malignant neoplasm. However, (99m)Tc-BnAO-NI, though with higher lipophilicity than (99m)Tc-BnAO, did not achieve better specific accumulation in hypoxic tissues. (99m)Tc-BnAO-NI/SPECT could be applied in clinics to noninvasively evaluate the feasibility of using pentoxifylline as a radiosensitizer by reducing tumor hypoxia in vivo.
AuthorsChien-Chung Hsia, Fu-Lei Huang, Guang-Uei Hung, Lie-Hang Shen, Chuan-Lin Chen, Hsin-Ell Wang
JournalApplied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine (Appl Radiat Isot) Vol. 69 Issue 4 Pg. 649-55 (Apr 2011) ISSN: 1872-9800 [Electronic] England
PMID21236690 (Publication Type: Journal Article)
CopyrightCopyright © 2010 Elsevier Ltd. All rights reserved.
Chemical References
  • Organotechnetium Compounds
Topics
  • Animals
  • Hypoxia (diagnostic imaging)
  • Mice
  • Mice, Inbred C3H
  • Organotechnetium Compounds
  • Sarcoma, Experimental (diagnostic imaging)
  • Tomography, Emission-Computed, Single-Photon

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: