HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Improved cardiac metabolism and activation of the RISK pathway contributes to improved post-ischemic recovery in calorie restricted mice.

Abstract
Recent evidence has suggested that activation of AMP-activated protein kinase (AMPK) induced by short-term caloric restriction (CR) protects against myocardial ischemia-reperfusion (I/R) injury. Because AMPK plays a central role in regulating energy metabolism, we investigated whether alterations in cardiac energy metabolism contribute to the cardioprotective effects induced by CR. Hearts from control or short-term CR mice were subjected to ex vivo I/R and metabolism, as well as post-ischemic functional recovery was measured. Even in the presence of elevated levels of fatty acids, CR significantly improved recovery of cardiac function following ischemia. While rates of fatty acid oxidation or glycolysis from exogenous glucose were similar between groups, improved functional recovery post-ischemia in CR hearts was associated with high rates of glucose oxidation during reperfusion compared to controls. Consistent with CR improving energy supply, hearts from CR mice had increased ATP levels, as well as lower AMPK activity at the end of reperfusion compared to controls. Furthermore, in agreement with the emerging concept that CR is a non-conventional form of pre-conditioning, we observed a significant increase in phosphorylation of Akt and Erk1/2 at the end of reperfusion. These data also suggest that activation of the reperfusion salvage kinase (RISK) pathway also contributes to the beneficial effects of CR in reducing post-ischemia contractile dysfunction. These findings also suggest that short-term CR improves post-ischemic recovery by promoting glucose oxidation, and activating the RISK pathway. As such, pre-operative CR may be a clinically relevant strategy for increasing ischemic tolerance of the heart.
AuthorsMiranda M Y Sung, Carrie-Lynn M Soltys, Grant Masson, Jamie J Boisvenue, Jason R B Dyck
JournalJournal of molecular medicine (Berlin, Germany) (J Mol Med (Berl)) Vol. 89 Issue 3 Pg. 291-302 (Mar 2011) ISSN: 1432-1440 [Electronic] Germany
PMID21140129 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Fatty Acids
  • Adenosine Triphosphate
  • Protein Kinases
  • AMP-Activated Protein Kinases
Topics
  • AMP-Activated Protein Kinases (metabolism)
  • Adenosine Triphosphate (metabolism)
  • Animals
  • Blotting, Western
  • Caloric Restriction
  • Fatty Acids (blood, metabolism)
  • Glycolysis (physiology)
  • Mice
  • Mice, Inbred C57BL
  • Myocardial Reperfusion Injury (metabolism, prevention & control)
  • Myocardium (metabolism)
  • Protein Kinases (metabolism)
  • Signal Transduction (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: