HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Chemically modified non-antimicrobial tetracyclines are multifunctional drugs against advanced cancers.

Abstract
Metastatic cancers account for more than 90% of cancer mortality. The metastasis of all cancers is critically mediated by enzymes that degrade extracellular matrix. Aggressive tumors are characterized by an imbalance between enzymes that degrade ECM and endogenous inhibitors of the enzymes. Matrix metalloproteinases (MMPs) make up the majority of ECM degrading enzymes implicated in cancer metastasis. The potent MMP inhibitory activities of tetracyclines, especially their chemically modified analogs, combined with their relatively well tolerated pharmacological profile, led several researchers to investigate their anticancer potential in a variety of cancers, including melanoma, lung, breast and prostate cancers. Chemically modified non-antibiotic tetracyclines (CMTs or COL) were tested using tumors of prostate, breast and melanomas. Some of these CMTs, notably, CMT-3 and CMT-308 significantly inhibited not only invasive potential and MMP activity, but also inhibited cell proliferation by inducing cell cycle arrest and apoptosis. CMT-3 and CMT-308 were significantly more potent than doxycycline or minocycline in inhibiting tumor cell-derived MMPs and inducing apoptosis in vitro and in vivo. CMT-3 (COL-3) showed potent inhibition of tumor growth in xenografts and in bone metastatic models of prostate cancer. Similar results were also reported in melanoma and breast cancer models. The mechanism by which CMTs kill tumor cells is via generation of hydroxyl free radicals ([OH](-)) which permeate and depolarize mitochondria, which in turn activates caspase mediated apoptosis. Analysis of tumor tissues from CMT-3 treated rats demonstrated reduction in angiogenesis and increase in apoptosis; both emerged as mechanisms of CMT action. These observations led to testing the efficacy of CMT-3 in human clinical trials against several types of cancer with significant outcomes, which are described in the next chapter of this issue.
AuthorsBal L Lokeshwar
JournalPharmacological research (Pharmacol Res) Vol. 63 Issue 2 Pg. 146-50 (Feb 2011) ISSN: 1096-1186 [Electronic] Netherlands
PMID21093590 (Publication Type: Comparative Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review)
CopyrightPublished by Elsevier Ltd.
Chemical References
  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Matrix Metalloproteinase Inhibitors
  • Tetracyclines
  • Doxycycline
Topics
  • Animals
  • Antineoplastic Agents (therapeutic use)
  • Apoptosis (drug effects)
  • Bone Neoplasms (secondary)
  • Cell Cycle (drug effects)
  • Cell Proliferation (drug effects)
  • Doxycycline (pharmacology, therapeutic use)
  • Enzyme Inhibitors (pharmacology, therapeutic use)
  • Humans
  • Male
  • Matrix Metalloproteinase Inhibitors
  • Melanoma (drug therapy)
  • Neoplasm Metastasis
  • Neoplasms (drug therapy)
  • Off-Label Use
  • Prostatic Neoplasms (drug therapy, pathology)
  • Rats
  • Tetracyclines (chemistry, pharmacology, therapeutic use)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: