HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis.

Abstract
The initial phase of sepsis is characterized by massive inflammatory cytokine production that contributes to multisystem organ failure and death. Costimulatory molecules are a class of receptors capable of regulating cytokine production in adaptive immunity. Recent studies described their presence on neutrophils and monocytes, suggesting a potential role in the regulation of cytokine production in innate immunity. The purpose of this study was to determine the role for OX40-OX40 ligand (OX40L) interaction in the innate immune response to polymicrobial sepsis. Humans with sepsis demonstrated upregulation of OX40L on monocytes and neutrophils, with mortality and intensive care unit stay correlating with expression levels. In an animal model of polymicrobial sepsis, a direct role for OX40L in regulating inflammation was indicated by improved survival, decreased cytokine production, and a decrease in remote organ damage in OX40L(-/-) mice. The finding of similar results with an OX40L Ab suggests a potential therapeutic role for OX40L blockade in sepsis. The inability of anti-OX40L to provide significant protection in macrophage-depleted mice establishes macrophages as an indispensable cell type within the OX40/OX40L axis that helps to mediate the clinical signs of disease in sepsis. Conversely, the protective effect of anti-OX40L Ab in RAG1(-/-) mice further confirms a T cell-independent role for OX40L stimulation in sepsis. In conclusion, our data provide an in vivo role for the OX40/OX40L system in the innate immune response during polymicrobial sepsis and suggests a potential beneficial role for therapeutic blockade of OX40L in this devastating disorder.
AuthorsMatthew Karulf, Ann Kelly, Andrew D Weinberg, Jeffrey A Gold
JournalJournal of immunology (Baltimore, Md. : 1950) (J Immunol) Vol. 185 Issue 8 Pg. 4856-62 (Oct 15 2010) ISSN: 1550-6606 [Electronic] United States
PMID20844189 (Publication Type: Journal Article)
Chemical References
  • Membrane Glycoproteins
  • OX40 Ligand
  • Receptors, OX40
  • TNFSF4 protein, human
  • Tnfsf4 protein, mouse
  • Tumor Necrosis Factors
Topics
  • Adult
  • Animals
  • Cell Separation
  • Female
  • Flow Cytometry
  • Humans
  • Immunity, Innate
  • Immunoassay
  • Inflammation (immunology, metabolism)
  • Male
  • Membrane Glycoproteins (immunology, metabolism)
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Middle Aged
  • Monocytes (immunology, metabolism)
  • OX40 Ligand (immunology, metabolism)
  • Receptors, OX40 (immunology, metabolism)
  • Sepsis (immunology, metabolism, mortality)
  • Tumor Necrosis Factors (immunology, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: