HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair.

Abstract
The role of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) in airway epithelial wound repair was investigated using normal human bronchial epithelial (NHBE) cells and a human airway epithelial cell line (Calu-3) of serous gland origin. Measurements of wound repair were performed using continuous impedance sensing to determine the time course for wound closure. Control experiments showed that the increase in impedance corresponding to cell migration into the wound was blocked by treatment with the actin polymerization inhibitor, cytochalasin D. Time lapse imaging revealed that NHBE and Calu-3 cell wound closure was dependent on cell migration, and that movement occurred as a collective sheet of cells. Selective inhibition of CFTR activity with CFTR(inh)-172 or short hairpin RNA silencing of CFTR expression produced a significant delay in wound repair. The CF cell line UNCCF1T also exhibited significantly slower migration than comparable normal airway epithelial cells. Inhibition of CFTR-dependent anion transport by treatment with CFTR(inh)-172 slowed wound closure to the same extent as silencing CFTR protein expression, indicating that ion transport by CFTR plays a critical role in migration. Moreover, morphologic analysis of migrating cells revealed that CFTR inhibition or silencing significantly reduced lamellipodia protrusion. These findings support the conclusion that CFTR participates in airway epithelial wound repair by a mechanism involving anion transport that is coupled to the regulation of lamellipodia protrusion at the leading edge of the cell.
AuthorsKatherine R Schiller, Peter J Maniak, Scott M O'Grady
JournalAmerican journal of physiology. Cell physiology (Am J Physiol Cell Physiol) Vol. 299 Issue 5 Pg. C912-21 (Nov 2010) ISSN: 1522-1563 [Electronic] United States
PMID20686068 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Anions
  • Epithelial Sodium Channels
  • Ion Channels
  • RNA, Small Interfering
  • Cystic Fibrosis Transmembrane Conductance Regulator
Topics
  • Animals
  • Anions (metabolism)
  • Cell Line
  • Cell Movement
  • Cystic Fibrosis (metabolism, pathology)
  • Cystic Fibrosis Transmembrane Conductance Regulator (genetics, metabolism)
  • Epithelial Sodium Channels (metabolism)
  • Humans
  • Ion Channels (metabolism)
  • Pseudopodia (metabolism, ultrastructure)
  • RNA, Small Interfering (genetics, metabolism)
  • Respiratory Mucosa (cytology, pathology, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: