HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Dehydration, dehydroxylation, and rehydroxylation of single-walled aluminosilicate nanotubes.

Abstract
Single-walled metal oxide (aluminosilicate) nanotubes are excellent candidates for addressing the long-standing issue of functionalizing nanotube interiors, due to their high surface reactivity and controllable dimensions. However, functionalization of the nanotube interior is impeded by its high surface silanol density (9.1 -OH/nm(2)) and resulting hydrophilicity. Controlled dehydration of the nanotubes is critical for the success of functionalization efforts. We employ a range of solid-state characterization tools to elucidate dehydration and dehydroxylation phenomena in the nanotubes as a function of heat treatment up to 450 degrees C. Vibrational spectroscopy (Fourier transform infrared, FT-IR), thermogravimetric analysis-mass spectrometry (TGA-MS), nitrogen physisorption, solid-state NMR, and X-ray diffraction (XRD) reveal that a completely dehydrated condition is achieved at 250 degrees C under vacuum and that the maximum pore volume is achieved at 300 degrees C under vacuum due to partial dehydroxylation of the dehydrated nanotube. Beyond 300 degrees C, further dehydroxylation partially disorders the nanotube wall structure. However, a unique rehydroxylation mechanism can partially reverse these structural changes upon re-exposure to water vapor. Finally, detailed XRD simulations and experiments allow further insight into the nanotube packing, the dimensions, and the dependence of nanotube XRD patterns on the water content.
AuthorsDun-Yen Kang, Ji Zang, Elizabeth R Wright, Arthur L McCanna, Christopher W Jones, Sankar Nair
JournalACS nano (ACS Nano) Vol. 4 Issue 8 Pg. 4897-907 (Aug 24 2010) ISSN: 1936-086X [Electronic] United States
PMID20684571 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: