Chemical validation of phosphodiesterase C as a chemotherapeutic target in Trypanosoma cruzi, the etiological agent of Chagas' disease.

Trypanosoma cruzi phosphodiesterase (PDE) C (TcrPDEC), a novel and rather unusual PDE in which, unlike all other class I PDEs, the catalytic domain is localized in the middle of the polypeptide chain, is able to hydrolyze cyclic GMP (cGMP), although it prefers cyclic AMP (cAMP), and has a FYVE-type domain in its N-terminal region (S. Kunz et al., FEBS J. 272:6412-6422, 2005). TcrPDEC shows homology to the mammalian PDE4 family members. PDE4 inhibitors are currently under development for the treatment of inflammatory diseases, such as asthma, chronic pulmonary diseases, and psoriasis, and for treating depression and serving as cognitive enhancers. We therefore tested a number of compounds originally synthesized as potential PDE4 inhibitors on T. cruzi amastigote growth, and we obtained several useful hits. We then conducted homology modeling of T. cruzi PDEC and identified other compounds as potential inhibitors through virtual screening. Testing of these compounds against amastigote growth and recombinant TcrPDEC activity resulted in several potent inhibitors. The most-potent inhibitors were found to increase the cellular concentration of cAMP. Preincubation of cells in the presence of one of these compounds stimulated volume recovery after hyposmotic stress, in agreement with their TcrPDEC inhibitory activity in vitro, providing chemical validation of this target. The compounds found could be useful tools in the study of osmoregulation in T. cruzi. In addition, their further optimization could result in the development of new drugs against Chagas' disease and other trypanosomiases.
AuthorsSharon King-Keller, Minyong Li, Alyssa Smith, Shilong Zheng, Gurpreet Kaur, Xiaochuan Yang, Binghe Wang, Roberto Docampo
JournalAntimicrobial agents and chemotherapy (Antimicrob Agents Chemother) Vol. 54 Issue 9 Pg. 3738-45 (Sep 2010) ISSN: 1098-6596 [Electronic] United States
PMID20625148 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Enzyme Inhibitors
  • Protozoan Proteins
  • Phosphoric Diester Hydrolases
  • Animals
  • Chagas Disease (drug therapy, microbiology)
  • Enzyme Inhibitors (chemical synthesis, chemistry, pharmacology, therapeutic use)
  • Molecular Structure
  • Phosphoric Diester Hydrolases (metabolism)
  • Protozoan Proteins (antagonists & inhibitors, metabolism)
  • Trypanosoma cruzi (drug effects, enzymology, pathogenicity)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!

Choose Username:
Verify Password: