HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Di-D-fructose dianhydride-enriched caramels: effect on colon microbiota, inflammation, and tissue damage in trinitrobenzenesulfonic acid-induced colitic rats.

Abstract
In the present study we describe the preparation and chemical characterization of a caramel with a high (70%) content of difructose dianhydrides (DFAs) and glycosylated derivatives (DFAs). This product was obtained by thermal activation (90 degrees C) of highly concentrated (90% w/v) aqueous D-fructose solutions using the sulfonic acid ion-exchange resin Lewatit S2328 as caramelization catalyst. DFAs represent a unique family of cyclic fructans with prebiotic properties already present in low proportions (<15%) in commercial caramel. We report the antiinflammatory activity of the new DFA-enriched caramel in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis, an experimental model that resembles human inflammatory bowel disease (IBD), and compare its effects with those obtained with a commercial sucrose caramel and with linear fructooligosaccharides (FOS). For this purpose, the effects on colon tissue damage, gut microbiota, short-chain fatty acid (SCFAs) production, and different inflammatory markers were evaluated. The administration of DFA-enriched caramel to colitic rats showed intestinal antiinflammatory effect, as evidenced macroscopically by a significant reduction in the extent of the colonic damage induced by TNBS. This effect was similar to that obtained with FOS in the same experimental settings, whereas commercial caramel was devoid of any significant antiinflammatory effect. The beneficial effect was associated with the inhibition of the colonic levels of the proinflammatory cytokines, tumor necrosis factor alpha (TNF alpha) and interleukin 1beta (IL-1beta), and the reduction in colonic myeloperoxidase (MPO) activity and inducible nitric oxide synthase (iNOS) expression. The DFA-enriched caramel also promoted a more favorable intestinal microbiota, increasing lactobacilli and bifidobacteria counts as well as inducing higher concentrations of SCFAs in the luminal colonic contents. These results reinforce the concept of DFAs and glycosyl-DFAs as dietary beneficial compounds with prebiotic properties and suggest that the novel DFA-enriched caramel here reported may be an interesting candidate to be explored for the dietary treatment of human IBD.
AuthorsBelén Arribas, Elena Suárez-Pereira, Carmen Ortiz Mellet, José M García Fernández, Christoph Buttersack, Maria Elena Rodríguez-Cabezas, Natividad Garrido-Mesa, Elvira Bailon, Eduardo Guerra-Hernández, Antonio Zarzuelo, Julio Gálvez
JournalJournal of agricultural and food chemistry (J Agric Food Chem) Vol. 58 Issue 10 Pg. 6476-84 (May 26 2010) ISSN: 1520-5118 [Electronic] United States
PMID20423151 (Publication Type: Comparative Study, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Anti-Inflammatory Agents
  • Disaccharides
  • Oligosaccharides
  • Prebiotics
  • fructooligosaccharide
  • difructose anhydride I
  • Sucrose
  • Trinitrobenzenesulfonic Acid
Topics
  • Animals
  • Anti-Inflammatory Agents (administration & dosage)
  • Candy (analysis)
  • Colitis (chemically induced, drug therapy)
  • Colon (microbiology)
  • Disaccharides (administration & dosage, analysis)
  • Disease Models, Animal
  • Female
  • Food Handling (methods)
  • Food, Fortified
  • Glycosylation
  • Hot Temperature
  • Oligosaccharides (administration & dosage)
  • Prebiotics
  • Rats
  • Rats, Wistar
  • Stereoisomerism
  • Sucrose (administration & dosage)
  • Trinitrobenzenesulfonic Acid

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: