HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

In vivo efficacy of acyl CoA: diacylglycerol acyltransferase (DGAT) 1 inhibition in rodent models of postprandial hyperlipidemia.

Abstract
Postprandial serum triglyceride concentrations have recently been identified as a major, independent risk factor for future cardiovascular events. As a result, postprandial hyperlipidemia has emerged as a potential therapeutic target. The purpose of this study was two-fold. Firstly, to describe and characterize a standardized model of postprandial hyperlipidemia in multiple rodent species; and secondly, apply these rodent models to the evaluation of a novel class of pharmacologic agent; acyl CoA:diacylglycerol acyltransferase (DGAT) 1 inhibitors. Serum triglycerides were measured before and for 4h after oral administration of a standardized volume of corn oil, to fasted C57BL/6, ob/ob, apoE(-/-) and CD-1 mice; Sprague-Dawley and JCR/LA-cp rats; and normolipidemic and hyperlipidemic hamsters. Intragastric administration of corn oil increased serum triglycerides in all animals evaluated, however the magnitude and time-course of the postprandial triglyceride excursion varied. The potent and selective DGAT-1 inhibitor A-922500 (0.03, 0.3 and 3 mg/kg, p.o.), dose-dependently attenuated the maximal postprandial rise in serum triglyceride concentrations in all species tested. At the highest dose of DGAT-1 inhibitor, the postprandial triglyceride response was abolished. This study provides a comprehensive characterization of the time-course of postprandial hyperlipidemia in rodents. In addition, the ability of DGAT-1 inhibitors to attenuate postprandial hyperlipidemia in multiple rodent models, including those that feature insulin resistance, is documented. Exaggerated postprandial hyperlipidemia is inherent to insulin-resistant states in humans and contributes to the substantially elevated cardiovascular risk observed in these patients. Therefore, by attenuating postprandial hyperlipidemia, DGAT-1 inhibition may represent a novel therapeutic approach to reduce cardiovascular risk.
AuthorsAndrew J King, Jason A Segreti, Kelly J Larson, Andrew J Souers, Philip R Kym, Regina M Reilly, Christine A Collins, Martin J Voorbach, Gang Zhao, Scott W Mittelstadt, Bryan F Cox
JournalEuropean journal of pharmacology (Eur J Pharmacol) Vol. 637 Issue 1-3 Pg. 155-61 (Jul 10 2010) ISSN: 1879-0712 [Electronic] Netherlands
PMID20385122 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright 2010 Elsevier B.V. All rights reserved.
Chemical References
  • Acyl Coenzyme A
  • Enzyme Inhibitors
  • Triglycerides
  • Corn Oil
  • Diacylglycerol O-Acyltransferase
Topics
  • Acyl Coenzyme A (metabolism)
  • Animals
  • Cardiovascular Diseases (prevention & control)
  • Corn Oil (pharmacology)
  • Cricetinae
  • Diacylglycerol O-Acyltransferase (antagonists & inhibitors, metabolism)
  • Disease Models, Animal
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors (pharmacology)
  • Hyperlipidemias (blood, drug therapy, enzymology, metabolism)
  • Male
  • Mice
  • Postprandial Period
  • Rats
  • Risk Factors
  • Rodentia (classification)
  • Triglycerides (blood, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: