HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

B-cell-derived lymphotoxin promotes castration-resistant prostate cancer.

Abstract
Prostate cancer (CaP) progresses from prostatic intraepithelial neoplasia through locally invasive adenocarcinoma to castration-resistant metastatic carcinoma. Although radical prostatectomy, radiation and androgen ablation are effective therapies for androgen-dependent CaP, metastatic castration-resistant CaP is a major complication with high mortality. Androgens stimulate growth and survival of prostate epithelium and early CaP. Although most patients initially respond to androgen ablation, many develop castration-resistant CaP within 12-18 months. Despite extensive studies, the mechanisms underlying the emergence of castration-resistant CaP remain poorly understood and their elucidation is critical for developing improved therapies. Curiously, castration-resistant CaP remains androgen-receptor dependent, and potent androgen-receptor antagonists induce tumour regression in castrated mice. The role of inflammation in castration-resistant CaP has not been addressed, although it was reported that intrinsic NF-kappaB activation supports its growth. Inflammation is a localized protective reaction to injury or infection, but it also has a pathogenic role in many diseases, including cancer. Whereas acute inflammation is critical for host defence, chronic inflammation contributes to tumorigenesis and metastatic progression. The inflammation-responsive IkappaB kinase (IKK)-beta and its target NF-kappaB have important tumour-promoting functions within malignant cells and inflammatory cells. The latter, including macrophages and lymphocytes, are important elements of the tumour microenvironment, but the mechanisms underlying their recruitment remain obscure, although they are thought to depend on chemokine and cytokine production. We found that CaP progression is associated with inflammatory infiltration and activation of IKK-alpha, which stimulates metastasis by an NF-kappaB-independent, cell autonomous mechanism. Here we show that androgen ablation causes infiltration of regressing androgen-dependent tumours with leukocytes, including B cells, in which IKK-beta activation results in production of cytokines that activate IKK-alpha and STAT3 in CaP cells to enhance hormone-free survival.
AuthorsMassimo Ammirante, Jun-Li Luo, Sergei Grivennikov, Sergei Nedospasov, Michael Karin
JournalNature (Nature) Vol. 464 Issue 7286 Pg. 302-5 (Mar 11 2010) ISSN: 1476-4687 [Electronic] England
PMID20220849 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Androgens
  • Lymphotoxin-alpha
  • I-kappa B Kinase
  • Ikbkb protein, mouse
Topics
  • Androgens (metabolism)
  • Animals
  • B-Lymphocytes (metabolism)
  • Humans
  • I-kappa B Kinase (genetics, metabolism)
  • Lymphotoxin-alpha (metabolism)
  • Male
  • Mice
  • Orchiectomy
  • Prostate (metabolism, pathology)
  • Prostatic Neoplasms (metabolism, pathology, physiopathology)
  • Survival Analysis

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: