HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Anti-tumor therapy with macroencapsulated endostatin producer cells.

AbstractBACKGROUND:
Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors.
RESULTS:
Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments.
CONCLUSIONS:
This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors.Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors.
AuthorsDanielle B Rodrigues, Roger Chammas, Natália V Malavasi, Patrícia L N da Costa, Rosa M Chura-Chambi, Keli N Balduino, Ligia Morganti
JournalBMC biotechnology (BMC Biotechnol) Vol. 10 Pg. 19 (Mar 02 2010) ISSN: 1472-6750 [Electronic] England
PMID20196841 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Angiogenesis Inhibitors
  • Antineoplastic Agents
  • Endostatins
Topics
  • Angiogenesis Inhibitors (therapeutic use)
  • Animals
  • Antineoplastic Agents (therapeutic use)
  • Carcinoma, Ehrlich Tumor (therapy)
  • Cell Transplantation
  • Endostatins (metabolism, therapeutic use)
  • Fibroblasts (metabolism)
  • Implants, Experimental
  • Male
  • Melanoma, Experimental (therapy)
  • Mice
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Neovascularization, Pathologic (prevention & control)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: