HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

NNZ-2591, a novel diketopiperazine, prevented scopolamine-induced acute memory impairment in the adult rat.

Abstract
In rats, cyclo-L-glycyl-L-2-allylproline (NNZ-2591), a diketopiperazine, is neuroprotective after ischemic brain injury and also improves motor function in a rat model of Parkinson's disease. Given nootropic actions of diketopiperazines, we investigated the effects of and potential role for acetylcholine neurotransmission in NNZ-2591 on spatial memory after scopolamine-induced amnesia in rats. Adult male Wistar rats were assigned to four groups: saline/water; saline/NNZ-2591; scopolamine/water and scopolamine/NNZ-2591. Morris Water Maze (MWM) tasks were used to determine spatial learning and memory. Thirty minutes prior to each of four daily acquisition trials, rats were intraperitoneally injected with either scopolamine (0.5 mg/kg) or saline. Either NNZ-2591 (30 mg/kg) or water was administered orally (gavages) 10 min after the injection. Immediately after completion of the day 4 acquisition trial a spatial probe trial was performed. The brains were then collected for immunohistochemical analysis. Scopolamine impaired spatial learning and memory compared to saline treated group, particularly in the day 1 acquisition trial. NNZ-2591 did not reverse this deficit, however it significantly improved memory retention by showing more time spent in the correct quadrant. NNZ-2591 also counteracted the scopolamine-induced up-regulation of choline-acetyltransferase positive neurons in the striatum and similarly counteracted the increased synaptophysin density in the hippocampus. Furthermore, a scopolamine-independent antagonistic effect on muscarinic M2 acetylcholine receptors was found after NNZ-2591 treatment, supporting its modulation of acetylcholine neurotransmission. The data suggest that NNZ-2591 prevents scopolamine-induced acute impairment in memory and modulation of acetylcholine neurotransmission may be the mode of action underlying the memory improvement.
AuthorsJian Guan, Rong Zhang, Linden Dale-Gandar, Steve Hodgkinson, Mark H Vickers
JournalBehavioural brain research (Behav Brain Res) Vol. 210 Issue 2 Pg. 221-8 (Jul 11 2010) ISSN: 1872-7549 [Electronic] Netherlands
PMID20188767 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright 2010 Elsevier B.V. All rights reserved.
Chemical References
  • Diketopiperazines
  • Neuroprotective Agents
  • Peptides, Cyclic
  • Receptor, Muscarinic M2
  • Receptors, AMPA
  • Synaptophysin
  • cyclo-L-glycyl-L-2-allylproline
  • Scopolamine
  • Tyrosine 3-Monooxygenase
  • Choline O-Acetyltransferase
  • Glutamate Decarboxylase
  • glutamate receptor ionotropic, AMPA 1
Topics
  • Analysis of Variance
  • Animals
  • Brain (drug effects, metabolism, pathology)
  • Choline O-Acetyltransferase (metabolism)
  • Diketopiperazines (pharmacology, therapeutic use)
  • Disease Models, Animal
  • Gene Expression Regulation (drug effects)
  • Glutamate Decarboxylase (metabolism)
  • Hippocampus (drug effects, metabolism)
  • Locomotion (drug effects)
  • Male
  • Maze Learning (drug effects)
  • Memory Disorders (chemically induced, pathology, prevention & control)
  • Neuroprotective Agents (pharmacology, therapeutic use)
  • Peptides, Cyclic (pharmacology, therapeutic use)
  • Rats
  • Rats, Wistar
  • Reaction Time (drug effects)
  • Receptor, Muscarinic M2 (metabolism)
  • Receptors, AMPA (metabolism)
  • Scopolamine
  • Synaptophysin (metabolism)
  • Time Factors
  • Tyrosine 3-Monooxygenase (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: