HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Oxidative stress increases phosphorylation of IkappaB kinase-alpha by enhancing NF-kappaB-inducing kinase after transient focal cerebral ischemia.

Abstract
The IkappaB kinase (IKK) complex is a central component in the classic activation of the nuclear factor-kappaB (NF-kappaB) pathway. It has been reported to function in physiologic responses, including cell death and inflammation. We have shown that IKK is regulated by oxidative status after transient focal cerebral ischemia (tFCI) in mice. However, the mechanism by which oxidative stress influences IKKs after tFCI is largely unknown. Nuclear accumulation and phosphorylation of IKKalpha (pIKKalpha) were observed 1 h after 30 mins of tFCI in mice. In copper/zinc-superoxide dismutase knockout mice, levels of NF-kappaB-inducing kinase (NIK) (an upstream kinase of IKKalpha), pIKKalpha, and phosphorylation of histone H3 (pH3) on Ser10 were increased after tFCI and were higher than in wild-type mice. Immunohistochemistry showed nuclear accumulation and pIKKalpha in mouse brain endothelial cells after tFCI. Nuclear factor-kappaB-inducing kinase was increased, and it enhanced pH3 by inducing pIKKalpha after oxygen-glucose deprivation (OGD) in mouse brain endothelial cells. Both NIK and pH3 interactions with IKKalpha were confirmed by coimmunoprecipitation. Treatment with IKKalpha small interfering RNA significantly reduced cell death after OGD. These results suggest that augmentation of NIK, IKKalpha, and pH3 in response to oxidative stress is involved in cell death after cerebral ischemia (or stroke).
AuthorsYun Seon Song, Min-Soo Kim, Hyun-Ae Kim, Bo-In Jung, Jiwon Yang, Purnima Narasimhan, Gab Seok Kim, Joo Eun Jung, Eun-Hee Park, Pak H Chan
JournalJournal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism (J Cereb Blood Flow Metab) Vol. 30 Issue 7 Pg. 1265-74 (Jul 2010) ISSN: 1559-7016 [Electronic] United States
PMID20125184 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Histones
  • RNA, Small Interfering
  • Superoxide Dismutase
  • Protein Serine-Threonine Kinases
  • I-kappa B Kinase
  • NF-kappa B kinase
  • Matrix Metalloproteinase 9
Topics
  • Animals
  • Cell Death (physiology)
  • Cell Line
  • Cell Nucleus (metabolism)
  • Endothelial Cells (cytology, metabolism, pathology)
  • Enzyme Induction
  • Histones (metabolism)
  • I-kappa B Kinase (metabolism)
  • Ischemic Attack, Transient (metabolism, pathology)
  • Male
  • Matrix Metalloproteinase 9 (metabolism)
  • Mice
  • Mice, Knockout
  • Oxidative Stress
  • Phosphorylation
  • Protein Serine-Threonine Kinases (metabolism)
  • RNA, Small Interfering (genetics, metabolism)
  • Superoxide Dismutase (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: