HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Clock genes and cancer.

Abstract
Period genes ( Per2, Per1) are essential circadian clock genes. They also function as negative growth regulators. Per2 mutant mice show de novo and radiation-induced epithelial hyperplasia, tumors, and an abnormal DNA damage response. Human tumors show Period gene mutations or decreased expression. Other murine clock gene mutations are not associated with a tumor prone phenotype. Shift work and nocturnal light exposure are associated with circadian clock disruption and with increased cancer risk. The mechanisms responsible for the connection between the circadian clock and cancer are not well defined. We propose that circadian disruption per se is not uniformly tumor promoting and the mechanisms for tumor promotion by specific circadian clock disturbances will differ dependent upon the genes and pathways involved. We propose that Period clock gene mutations promote tumorigenesis by unique molecular pathways. Per2 and Per1 modulate beta-catenin and cell proliferation in colon and non-colon cancer cells. Per2 mutation increases intestinal beta-catenin levels and colon polyp formation. Per2 mutation also increases Apc(Min/+)-mediated intestinal and colonic polyp formation. Intestinal tumorigenesis per se may also alter clock function as a result of increased beta-catenin destabilizing PER2 protein. Levels and circadian rhythm of PER2 in Apc(Min/+) mouse intestine are markedly decreased, and selective abnormalities in intestinal clock gene and clock-controlled gene expression are seen. We propose that tumor promotion by loss of PERIOD clock proteins is unique to these clock genes as a result of altered beta-catenin signaling and DNA damage response. PERIOD proteins may offer new targets for cancer prevention and control.
AuthorsPatricia A Wood, Xiaoming Yang, William J M Hrushesky
JournalIntegrative cancer therapies (Integr Cancer Ther) Vol. 8 Issue 4 Pg. 303-8 (Dec 2009) ISSN: 1552-695X [Electronic] United States
PMID20042409 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Per1 protein, mouse
  • Per2 protein, mouse
  • Period Circadian Proteins
  • beta Catenin
Topics
  • Animals
  • Cell Line, Tumor
  • Cell Proliferation
  • Circadian Rhythm (genetics, physiology)
  • Colonic Neoplasms (genetics, metabolism, pathology)
  • Colonic Polyps (genetics, metabolism, pathology)
  • Gene Expression
  • Gene Expression Regulation, Neoplastic
  • Mice
  • Mice, Mutant Strains
  • Mutation
  • Neoplasms (genetics, metabolism, pathology)
  • Period Circadian Proteins (genetics, metabolism)
  • beta Catenin (biosynthesis, genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: