HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Oxidative stress due to nickel toxicity in the liver of protein-deficient rats.

Abstract
This study was designed to determine the oxidative stress induced by nickel sulfate in the liver in the protein-deficient rats. Nickel sulfate in the dose of 800 mg/L in drinking water was administrated to Sprauge Dawley (SD) rats as well as protein-deficient rats for a total duration of 8 weeks. The effects of nickel treatment and protein deficiency separately and in combination were studied on rat liver antioxidant defense system enzymes like catalase, glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase (GST), as well as on lipid peroxidation (LPO). The investigations revealed a significant increase in the activity of enzymes, which include catalase, Gpx, GR and GST, and in the levels with LPO following nickel treatment in combination with protein deficiency. On the contrary, feeding to control rats resulted in a significant depression in the levels of SOD and GSH. However, nickel treatment to normal rats caused a significant increase in the activity of enzymes catalase and GST and in the levels of LPO, whereas the levels of GSH get significantly depressed. Further, nickel treatment to protein-deficient rats did not cause any additional alteration in the status of liver antioxidants as were observed in conditions of protein deficiency.
AuthorsPardeep Sidhu, M L Garg, D K Dhawan
JournalToxicology mechanisms and methods (Toxicol Mech Methods) Vol. 15 Issue 6 Pg. 411-7 ( 2005) ISSN: 1537-6524 [Electronic] England
PMID20021064 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: