HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy.

Abstract
Proximal spinal muscular atrophy (SMA), one of the most common genetic causes of infant death, results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of survival motor neuron (SMN) protein. In humans, the SMN gene is duplicated; SMA results from the loss of SMN1 but SMN2 remains intact. SMA severity is related to the copy number of SMN2. Compounds which increase the expression of SMN2 could, therefore, be potential therapeutics for SMA. Ultrahigh-throughput screening recently identified substituted quinazolines as potent SMN2 inducers. A series of C5-quinazoline derivatives were tested for their ability to increase SMN expression in vivo. Oral administration of three compounds (D152344, D153249 and D156844) to neonatal mice resulted in a dose-dependent increase in Smn promoter activity in the central nervous system. We then examined the effect of these compounds on the progression of disease in SMN lacking exon 7 (SMNDelta7) SMA mice. Oral administration of D156844 significantly increased the mean lifespan of SMNDelta7 SMA mice by approximately 21-30% when given prior to motor neuron loss. In summary, the C5-quinazoline derivative D156844 increases SMN expression in neonatal mouse neural tissues, delays motor neuron loss at PND11 and ameliorates the motor phenotype of SMNDelta7 SMA mice.
AuthorsMatthew E R Butchbach, Jasbir Singh, Margrét Thorsteinsdóttir, Luciano Saieva, Elzbieta Slominski, John Thurmond, Thorkell Andrésson, Jun Zhang, Jonathan D Edwards, Louise R Simard, Livio Pellizzoni, Jill Jarecki, Arthur H M Burghes, Mark E Gurney
JournalHuman molecular genetics (Hum Mol Genet) Vol. 19 Issue 3 Pg. 454-67 (Feb 01 2010) ISSN: 1460-2083 [Electronic] England
PMID19897588 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Quinazolines
  • Survival of Motor Neuron 2 Protein
  • 2,4-diaminoquinazoline
Topics
  • Animals
  • Cell Survival (drug effects)
  • Disease Models, Animal
  • Gene Expression (drug effects)
  • Humans
  • Mice
  • Mice, Knockout
  • Mice, Transgenic
  • Motor Neurons (drug effects, metabolism)
  • Muscular Atrophy, Spinal (drug therapy, genetics, metabolism, physiopathology)
  • Phenotype
  • Promoter Regions, Genetic (drug effects)
  • Quinazolines (administration & dosage, chemistry)
  • Survival of Motor Neuron 2 Protein (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: