HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Neuroprotective effects of a standardized flavonoid extract from Diospyros kaki leaves.

AbstractETHNOPHARMACOLOGICAL RELEVANCE:
Flavonoids, extracted from the leaves of Diospyros kaki, are the main therapeutic components of NaoXingQing (NXQ), a potent and patented Chinese herbal remedy widely used in China for the treatment of apoplexy syndrome.
AIM OF THE STUDY:
To investigate the neuroprotective effects of FLDK-P70, a standardized flavonoid extract, using in vivo rat models of both focal ischemia/reperfusion (I/R) injury induced by middle cerebral artery occlusion (MCAO) and on transient global brain ischemia induced by four-vessel occlusion (4-VO). We also aim to examine the effects of FLDK-P70 on glutamate-induced cell injury of hippocampal neurons as well as on hypoxia-induced injury of cortical neurons in primary cell culture.
MATERIALS AND METHODS AND RESULTS:
Administration of FLDK-P70 for 12 days (40, 80 mg/kg body weight, p.o., 5 days before and 7 days after 4-VO) increased the survival of hippocampal CA1 pyramidal neurons after transient global brain ischemia. Similarly, administration of FLDK-P70 for 7 days (40, 80 mg/kg body weight, p.o., 3 days before and 4 days after MCAO) significantly reduced the lesion of the insulted brain hemisphere and improved the neurological behavior of rats. In primary rat hippocampal neuronal cultures, pretreatment with FLDK-P70 (5, 10 microg/ml) protected neurons from glutamate-induced excitotoxic neuronal death in a dose-dependent manner. In primary rat cerebral cortical neuronal culture, pretreatment with FLDK-P70 (25, 100 microg/ml) also reduced hypoxia-reoxygen induced neuronal death and apoptosis in a dose-dependent manner.
CONCLUSIONS:
These in vivo and in vitro results suggest that FLDK-P70 significantly protects rats from MCAO and 4-VO ischemic injury in vivo and protects hippocampal neurons from glutamate-induced excitotoxic injury as well as cortical neurons from hypoxia-induced injury in vitro. The mechanisms of these effects may be due to the antioxidative activity of the flavonoids. These results convincingly demonstrate that FLDK-P70 may be useful for the prevention and treatment of ischemia/reperfusion injury and other related neurodegenerative diseases.
AuthorsWeijian Bei, Linquan Zang, Jiao Guo, Wenlie Peng, Anlong Xu, David A Good, Yinming Hu, Wei Wu, Dehui Hu, Xinghong Zhu, Ming Wei, Chuyuan Li
JournalJournal of ethnopharmacology (J Ethnopharmacol) Vol. 126 Issue 1 Pg. 134-42 (Oct 29 2009) ISSN: 1872-7573 [Electronic] Ireland
PMID19665536 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • FLDK-P70
  • Flavonoids
  • Neuroprotective Agents
  • Glutamic Acid
Topics
  • Animals
  • Apoptosis (drug effects)
  • CA1 Region, Hippocampal (drug effects, pathology)
  • Cell Culture Techniques
  • Cell Death (drug effects)
  • Cerebral Cortex (drug effects, pathology)
  • Disease Models, Animal
  • Flavonoids (chemistry, therapeutic use)
  • Glutamic Acid (toxicity)
  • Ischemic Attack, Transient (drug therapy)
  • Male
  • Neurons (drug effects, pathology)
  • Neuroprotective Agents (therapeutic use)
  • Rats
  • Rats, Sprague-Dawley
  • Reperfusion Injury (drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: