HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells.

Abstract
This study demonstrates cytotoxic and genotoxic potential of juglone, a chief constituent of walnut, and its underlying mechanisms against melanoma cells. MTT assay and clonogenic assay were used to study cytotoxicity, micronucleus assay to assess genotoxicity, glutathione (GSH) assay and 2',7'-dicholorofluorescein diacetate (DCFH-DA) assay to evaluate the oxidative stress induction. Apoptosis/necrosis induction was analysed by flow cytometry. We observed a concentration-dependent decrease in cell survival with a corresponding increase in the lactate dehydrogenase levels. A dose-dependent increase in the frequency of micronucleated binucleate cells indicated the potential of juglone to induce cytogenetic damage in melanoma tumor cells. Moreover, results of the micronuclei study indicated division delay in the proliferating cell population by showing decrease in the cytokinesis blocked proliferation index. Further, juglone-induced apoptosis and necrosis could be demonstrated by oligonucleosomal ladder formation, microscopic analysis, increase in the hypodiploid fraction (sub Go peak in DNA histogram), as well as an increased percentage of AnnexinV(+)/PI(+) cells detected by flow cytometry. A significant concentration-dependent decrease in the glutathione levels and increase in dichlorofluorescein (DCF) fluorescence after juglone treatment confirmed the ability of juglone to generate intracellular reactive oxygen species. The cytotoxic effect of juglone can be attributed to mechanisms including the induction of oxidative stress, cell membrane damage, and a clastogenic action leading to cell death by both apoptosis and necrosis.
AuthorsB Kiran Aithal, M R Sunil Kumar, B Nageshwar Rao, Nayanabhirama Udupa, B S Satish Rao
JournalCell biology international (Cell Biol Int) Vol. 33 Issue 10 Pg. 1039-49 (Oct 2009) ISSN: 1095-8355 [Electronic] England
PMID19555768 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Annexin A5
  • Antineoplastic Agents
  • Naphthoquinones
  • Reactive Oxygen Species
  • L-Lactate Dehydrogenase
  • Glutathione
  • juglone
Topics
  • Animals
  • Annexin A5 (metabolism)
  • Antineoplastic Agents (pharmacology)
  • Apoptosis
  • Cell Line, Tumor
  • Cell Survival (drug effects, physiology)
  • DNA Fragmentation
  • Glutathione (analysis)
  • Juglans (chemistry)
  • L-Lactate Dehydrogenase (analysis)
  • Melanoma (metabolism)
  • Melanoma, Experimental (metabolism)
  • Mice
  • Naphthoquinones (pharmacology)
  • Reactive Oxygen Species (analysis)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: