HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Characterization of chemosensitivity and resistance of human cancer cell lines to platinum(II) versus platinum(IV) anticancer agents.

Abstract
Platinum (Pt)(IV) complexes are thought to function as prodrugs for anticancer Pt(II) drugs. We studied two pairs of Pt(II)/Pt(IV) complexes to explore whether there were differences in their cytotoxic activities, their abilities to cause acquired resistance and their gene expression profiles in the resistant lines. Microtiter methods were used to evaluate the antiproliferative activity of cisplatin, oxoplatin, [trans-d,l-(1,2-diaminocyclo-hexane)]dichloroplatinum(II) [DACH-Pt(II)] and cis,trans-[trans-d,l-(1,2-diaminocyclo-hexane)]-dichlorodihydroxoplatinum(IV) [DACH-Pt(IV)] in a panel of 14 human cancer cell lines. Cisplatin and oxoplatin showed significant similar spectra of cytotoxicity, whereas DACH-Pt(II) and DACH-Pt(IV) did not. DACH-Pt(IV) required more than 24 h to reach full potency, whereas the other three Pt complexes achieved maximal activity in less than 24 h. The SISO cervical cell line was made four- to six-fold resistant to the four Pt complexes by weekly exposure to the respective agent. Glutathione (GSH) levels increased in all resistant lines except for the DACH-Pt(IV) resistant line. The catalytic concentrations of various redox enzymes (GSH transferase, GSH peroxidase, GSH reductase, catalase) were all unchanged in the resistant lines relative to the native line. Multidrug resistance protein 2 expression was detected in the cisplatin-resistant and oxoplatin-resistant cell lines but not in the native line. The transcription of 29,000 genes in the SISO lines resistant to either cisplatin or oxoplatin was studied by DNA-microarray methods and compared with the native line. Overall changes in gene transcription were very different between the cisplatin-resistant and oxoplatin-resistant cell lines. Thus, Pt(IV) complexes seem to have biological actions that distinguish them from their Pt(II) counterparts, even when they show cross-resistance.
AuthorsJanina Hamberger, Manuel Liebeke, Maria Kaiser, Karin Bracht, Ulrike Olszewski, Robert Zeillinger, Gerhard Hamilton, Dagmar Braun, Patrick J Bednarski
JournalAnti-cancer drugs (Anticancer Drugs) Vol. 20 Issue 7 Pg. 559-72 (Aug 2009) ISSN: 1473-5741 [Electronic] England
PMID19491657 (Publication Type: Comparative Study, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents
  • Platinum Compounds
  • Glutathione
Topics
  • Animals
  • Antineoplastic Agents (chemistry, pharmacology)
  • Cell Line, Tumor
  • Cell Proliferation (drug effects)
  • Dogs
  • Drug Resistance, Neoplasm (drug effects)
  • Drug Screening Assays, Antitumor
  • Gene Expression Regulation, Neoplastic
  • Glutathione (metabolism)
  • Humans
  • Oligonucleotide Array Sequence Analysis (methods)
  • Platinum Compounds (chemistry, pharmacology)
  • Time Factors
  • Transcription, Genetic

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: