HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: interlinking oxidative and heat-stress responses.

Abstract
The recent genetic and biochemical studies reveal a considerable overlap among cellular processes in response to heat and oxidative stress stimuli in plants suggesting an intimate relationship between the heat-shock response and oxidative stress responses. Pennisetum glaucum (Pg) seedlings were exposed to heat stress (42 degrees C for 0.5, 1.0 and 24h) and a mixture of RNA from all the heat stressed seedlings was used to prepare cDNA. Full-length cDNA clones encoding for cytoplasmic ascorbate peroxidase 1 (PgAPX1) and heat-shock factor (PgHSF) were isolated by screening heat stress-specific cDNA library using corresponding EST sequences as radioactive probes. These full-length cDNAs were expressed in E. coli and their recombinant proteins were purified to near homogeneity. The recombinant PgAPX1 preferred ascorbate but did not accept guaiacol as a reducing substrate. Over-expression of PgAPX1 protects E. coli cells against methyl viologen-induced oxidative stress. Sequence analysis of PgAPX1 promoter identified a number of putative stress regulatory cis-elements including a heat-shock element (HSE). Heat-shock transcription factors (HSFs) play a central role in mediating these overlapping cellular processes. Gel shift analysis and competition with specific and non-specific unlabeled DNA probes showed a specific interaction between HSE of PgAPX1 and the PgHSF protein. Expression analysis of PgHSF in Pennisetum showed maximum increase in transcript level in response to heat stress within 30 min of exposure and slowed down at subsequent time points of heat stress, indicating a typical characteristic of HSF in terms of early responsiveness. Expression of PgAPX1 significantly increased under heat-stress condition; however, the maximum expression observed at 24h of heat stress. In gel activity of PgAPX1 in Pennisetum plants also showed an increase in response to heat stress (42 degrees C) being maximum at 24h and these trends are in conformity with the expression pattern of PgAPX1. Expression patterns and interactive specificity of HSF with HSE (PgAPX1) suggest a probable vital interlink in heat and oxidative stress signaling pathways that plays a significant role in comprehending the underlying mechanisms in plant abiotic stress tolerance.
AuthorsRamesha A Reddy, Bhumesh Kumar, Palakolanu Sudhakar Reddy, Rabi N Mishra, Srikrishna Mahanty, Tanushri Kaul, Suresh Nair, Sudhir K Sopory, Malireddy K Reddy
JournalJournal of plant physiology (J Plant Physiol) Vol. 166 Issue 15 Pg. 1646-59 (Oct 15 2009) ISSN: 1618-1328 [Electronic] Germany
PMID19450902 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • DNA, Complementary
  • DNA-Binding Proteins
  • Heat Shock Transcription Factors
  • Heat-Shock Proteins
  • Plant Proteins
  • Recombinant Proteins
  • Transcription Factors
  • Peroxidases
  • Ascorbate Peroxidases
Topics
  • Amino Acid Sequence
  • Ascorbate Peroxidases
  • Base Sequence
  • Cloning, Molecular
  • DNA, Complementary (chemistry)
  • DNA-Binding Proteins (chemistry, genetics)
  • Escherichia coli (genetics)
  • Gene Expression Regulation, Plant
  • Gene Library
  • Heat Shock Transcription Factors
  • Heat-Shock Proteins (chemistry, genetics)
  • Heat-Shock Response (genetics)
  • Molecular Sequence Data
  • Oxidative Stress (genetics)
  • Pennisetum (enzymology, genetics)
  • Peroxidases (chemistry, genetics)
  • Phylogeny
  • Plant Proteins (chemistry, genetics)
  • Recombinant Proteins (chemistry, genetics)
  • Temperature
  • Transcription Factors (chemistry, genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: