HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Methanesulfonamide: a cosolvent and a general acid catalyst in sharpless asymmetric dihydroxylations.

Abstract
To obtain information about the effect that methanesulfonamide has in the hydrolysis step in Sharpless asymmetric dihydroxylation, a series of aliphatic and conjugated aromatic olefins were dihydroxylated with and without methanesulfonamide. The hypothesis in this study was that methanesulfonamide is a cosolvent that aids in the transfer of the hydroxide ions from the water phase to the organic phase. A plot of t90% versus the computational partition coefficient clog P of the intermediate osmate ester of nonterminal aliphatic olefins revealed that the polarity of the intermediate osmate ester has a significant effect on the reaction time and methanesulfonamide effect. The more polar the intermediate osmate ester, the faster is the reaction without methanesulfonamide and the smaller the accelerating methanesulfonamide effect. Methanesulfonamide had no accelerating effect in the asymmetric dihydroxylation of short chain terminal aliphatic olefins as a result of easier accessibility of terminal osmate ester groups to the water phase. A cosolvent hypothesis was found not to be valid in asymmetric dihydroxylations of conjugated aromatic olefins. In the reaction conditions used in Sharpless asymmetric dihydroxylation, weakly acidic methanesulfonamide was found to be a general acid catalyst that protonates the intermediate osmate esters of conjugated aromatic olefins in the hydrolysis step.
AuthorsMikko H Junttila, Osmo O E Hormi
JournalThe Journal of organic chemistry (J Org Chem) Vol. 74 Issue 8 Pg. 3038-47 (Apr 17 2009) ISSN: 1520-6904 [Electronic] United States
PMID19301884 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: