HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Sarcophine-diol, a Chemopreventive Agent of Skin Cancer, Inhibits Cell Growth and Induces Apoptosis through Extrinsic Pathway in Human Epidermoid Carcinoma A431 Cells.

Abstract
Sarcophine-diol (SD), a structural modifications of sarcophine, has shown chemopreventive effects on 7,12-dimethylbenz(a)anthracene-initiated and 12-O-tetradecanoylphorbol-13-acetate-promoted skin tumor developments in mice. Tumorigenesis is associated with uncontrolled cell growth and loss of apoptosis. In the present study, the effects of SD on cell growth and apoptosis in human epidermoid carcinoma A431 cells were determined to assess whether SD could inhibit cell growth and/or induce apoptosis, thus elucidating possible mechanism of action. MTT assay was used for cell viability; bromodeoxyuridine incorporation assay was used for cell proliferation; fluorescence-activated cell sorting analysis of annexin V/propidium iodide staining and TUNEL assay were used for determining apoptotic cells; Western blot analysis was used for determining the expression of caspase-3 and colorimetric caspase activity assays were used for determination of caspase-3, -8, and -9 activity. The results showed that SD treatment at concentration of 200 to 600 microM resulted in a concentration-dependent decrease in cell viability and cell proliferation in A431 cells, which largely inhibited cell growth. Sarcophine-diol treatment induced a strong apoptosis and significantly (P < .05) increased DNA fragmentation in A431 cells. Furthermore, SD treatment significantly (P < .05) increased the activity and expression of caspase-3 through activation of upstream caspase-8 in A431 cells rather than the activation of caspase 9. Sarcophine-diol treatment is relatively much less cytotoxic in monkey kidney normal CV-1 cells. These results suggest that SD decreases cell growth and induces apoptosis through caspase-dependent extrinsic pathway in A431 cells, and this may contribute to its overall chemopreventive effects in mouse skin cancer models.
AuthorsXiaoying Zhang, Ajay Bommareddy, Wei Chen, Sherief Khalifa, Radhey S Kaushik, Hesham Fahmy, Chandradhar Dwivedi
JournalTranslational oncology (Transl Oncol) Vol. 2 Issue 1 Pg. 21-30 (Mar 2009) ISSN: 1936-5233 [Electronic] United States
PMID19252748 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: