HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Diabetic myopathy differs between Ins2Akita+/- and streptozotocin-induced Type 1 diabetic models.

Abstract
Mechanistic studies examining the effects of Type 1 diabetes mellitus (T1DM) on skeletal muscle have largely relied on streptozotocin-induced diabetic (STZ) rodents. Unfortunately, characterization of diabetic myopathy in this model is confounded by the effects of streptozotocin on skeletal muscle independent of the diabetic phenotype. Here we define adolescent diabetic myopathy in a novel, genetic model of T1DM, Ins2(Akita+/-) mice, and contrast these findings with STZ mice. Eight weeks of diabetes resulted in significantly reduced gastrocnemius-plantaris-soleus mass (control: 0.16 +/- 0.005 g; Ins2(Akita+/-): 0.12 +/- 0.003 g; STZ: 0.12 +/- 0.01g) and IIB/D fiber area in Ins2(Akita+/-) (1,294 +/- 94 microm(2)) and STZ (1,768 +/- 163 microm(2)) compared with control (2,241 +/- 144 microm(2)). Conversely, STZ type I fibers (1,535 +/- 165 microm(2)) were significantly larger than Ins2(Akita+/-) (915 +/- 76 microm(2)) but not control (1,152 +/- 86 microm(2)). Intramyocellular lipid increased in STZ (122.9 +/- 3.6% of control) but not Ins2(Akita+/-) likely resultant from depressed citrate synthase (control: 6.2 +/- 1.2 micromol.s(-1).mg(-1); Ins2(Akita+/-): 5.2 +/- 0.8 micromol.s(-1).mg(-1); STZ: 2.8 +/- 0.5 micromol.s(-1).mg(-1)) and 3-beta-hydroxyacyl coenzyme-A dehydrogenase (control: 4.2 +/- 0.6 nmol.s(-1).mg(-1); Ins2(Akita+/-): 5.0 +/- 0.6 nmol.s(-1).mg(-1); STZ: 2.7 +/- 0.6 nmol.s(-1).mg(-1)) enzyme activity in STZ muscle. In situ muscle stimulation revealed lower absolute peak tetanic force in Ins2(Akita+/-) (70.2 +/- 8.2% of control) while STZ exhibited an insignificant decrease (87.6 +/- 7.9% of control). Corrected for muscle mass, no force loss was observed in Ins2(Akita+/-), while STZ was significantly elevated vs. control and Ins2(Akita+/-). These results demonstrate that atrophy and specific fiber-type loss in Ins2(Akita+/-) muscle did not affect contractile properties (relative to muscle mass). Furthermore, we demonstrate distinctive contractile, metabolic, and phenotypic properties in STZ vs. Ins2(Akita+/-) diabetic muscle despite similarity in hyperglycemia/hypoinsulinemia, raising concerns of our current state of knowledge regarding the effects of T1DM on skeletal muscle.
AuthorsMatthew P Krause, Michael C Riddell, Carly S Gordon, S Abdullah Imam, Enzo Cafarelli, Thomas J Hawke
JournalJournal of applied physiology (Bethesda, Md. : 1985) (J Appl Physiol (1985)) Vol. 106 Issue 5 Pg. 1650-9 (May 2009) ISSN: 8750-7587 [Print] United States
PMID19246652 (Publication Type: Journal Article)
Chemical References
  • Insulin
  • Lipids
Topics
  • Animals
  • Diabetes Complications
  • Diabetes Mellitus, Experimental (genetics, pathology)
  • Diabetes Mellitus, Type 1 (genetics, pathology)
  • Electric Stimulation
  • Insulin (genetics, metabolism)
  • Lipids (biosynthesis)
  • Male
  • Mice
  • Muscle Contraction (physiology)
  • Muscle Fibers, Skeletal (drug effects, pathology)
  • Muscle, Skeletal (drug effects, pathology)
  • Myositis (chemically induced, genetics, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: