HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

17Beta-hydroxysteroid dehydrogenase enzymes and breast cancer.

Abstract
Sex steroids play an important role in the development and differentiation in several tissues. Biologically active hormones that are locally converted in endocrine organs in the tissue where they exert their effects without release into extracellular space is a field of endocrinology that has been called intracrinology. In pre-menopausal women the ovary is the main source of estrogens, but in post-menopausal women the estrogen production as main site of synthesis moves to peripheral tissues and almost all of the sex steroids are synthesised from precursors of adrenal origin. In breast cancer 60-80% of the tumors express high levels of oestrogen receptor (ER) alpha which gives estrogen a proliferative effect. Breast tumors tend to have a higher intratumoral estrogen concentration than normal breast tissue and plasma, and in situ synthesis and the metabolism of estrogens is believed to be of great importance for the development and progression of the disease. The activity of estrogen metabolizing enzymes in breast are mainly aromatase, estrone sulfatases and 17HSD enzymes. 17HSD1 and 17HSD2 are the family members known to be of main importance in breast cancer. High expression of 17HSD1 has been associated to poor prognosis in breast cancer and late relapse among patients with ER-positive tumors. One of the mechanisms behind high 17HSD1 expression is gene amplification. Low or absent expression of 17HSD2 is associated to decreased survival in ER-positive breast cancer. 17HSD14 is one of the latest discovered 17HSD enzymes, transfection of 17HSD14 in human breast cancer cells significantly decreased the levels of estradiol in the culture medium. Low expression of 17HSD14 mRNA expression in breast cancer was correlated to decreased survival. The understanding of intratumoral synthesis of sex steroids in breast cancer is crucial to understand the disease both in pre- and post-menopausal women. Further studies are desirable to state the direct role of these enzymes in breast cancer and which patients that may benefit from new therapeutic strategies targeting 17HSD enzymes. The new inhibitors targeting 17HSD1 have shown promising results in pre-clinical studies to have clinical potential in the future.
AuthorsAgneta Jansson
JournalThe Journal of steroid biochemistry and molecular biology (J Steroid Biochem Mol Biol) Vol. 114 Issue 1-2 Pg. 64-7 (Mar 2009) ISSN: 1879-1220 [Electronic] England
PMID19167496 (Publication Type: Journal Article, Review)
Chemical References
  • ESR1 protein, human
  • Estrogen Receptor alpha
  • Estrogens
  • Isoenzymes
  • 17-Hydroxysteroid Dehydrogenases
  • 3 (or 17)-beta-hydroxysteroid dehydrogenase
Topics
  • 17-Hydroxysteroid Dehydrogenases (antagonists & inhibitors, genetics, metabolism)
  • Breast Neoplasms (enzymology, pathology)
  • Estrogen Receptor alpha (genetics, metabolism)
  • Estrogens (metabolism)
  • Female
  • Humans
  • Isoenzymes (antagonists & inhibitors, genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: