HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Kaposi's sarcoma-associated herpesvirus upregulates angiogenin during infection of human dermal microvascular endothelial cells, which induces 45S rRNA synthesis, antiapoptosis, cell proliferation, migration, and angiogenesis.

Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is associated with the angioproliferative KS lesions characterized by spindle-shaped endothelial cells, inflammatory cells, cytokines, growth factors, and angiogenic factors. De novo KSHV infection of human microvascular dermal endothelial cells results in increased secretion of several growth factors, cytokines, chemokines, and angiogenic factors, and the multifunctional angiogenic protein angiogenin is one of them. KS tissue sections were positive for angiogenin, highlighting the importance of angiogenin in KS pathogenesis. Examination of KSHV-mediated angiogenin upregulation and secretion and potential outcomes revealed that during infection of primary endothelial cells, KSHV induced a time- and dose-dependent increase in angiogenin gene expression and protein secretion beginning as early as 8 h postinfection and lasting until the fifth day of our observation period. TIVE latently transformed cells (TIVE-LTC) latently infected with KSHV secreted high levels of angiogenin. Angiogenin was also detected in BCBL-1 cells (human B cells) carrying KSHV in a latent state. Significant induction of angiogenin was observed in cells expressing KSHV ORF73 (LANA-1; latent) and ORF74 (lytic) genes alone, and moderate induction was seen with the lytic KSHV ORF50 gene. Angiogenin bound to surface actin, internalized in a microtubule-independent manner, and translocated into the nucleus and nucleolus of infected cells. In addition, it increased 45S rRNA gene transcription, antiapoptosis, and proliferation of infected cells, thus demonstrating the multifunctional nature of KSHV-induced angiogenin. These activities were dependent on angiogenin nuclear translocation, which was inhibited by neomycin. Upregulation of angiogenin led to increased activation of urokinase plasminogen activator and generation of active plasmin, which facilitated the migration of endothelial cells toward chemoattractants, including angiogenin, and chemotaxis was prevented by the inhibition of angiogenin nuclear translocation. Treatment of KSHV-infected cell supernatants with antiangiogenin antibodies significantly inhibited endothelial tube formation, and inhibition of nuclear translocation of angiogenin also blocked the expression of KSHV-induced vascular endothelial growth factor C. Collectively, these results strongly suggest that by increasing infected endothelial cell 45S rRNA synthesis, proliferation, migration, and angiogenesis, KSHV-induced angiogenin could be playing a pivotal role in the pathogenesis of KSHV infection, including a contribution to the angioproliferative nature of KS lesions. Our studies suggested that LANA-1 and vGPCR play roles in KSHV-induced angiogenesis and that the angiogenic potential of vGPCR might also be due to its ability to induce angiogenin.
AuthorsSathish Sadagopan, Neelam Sharma-Walia, Mohanan Valiya Veettil, Virginie Bottero, Rita Levine, Richard J Vart, Bala Chandran
JournalJournal of virology (J Virol) Vol. 83 Issue 7 Pg. 3342-64 (Apr 2009) ISSN: 1098-5514 [Electronic] United States
PMID19158252 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • RNA, Ribosomal
  • RNA, ribosomal, 45S
  • angiogenin
  • Ribonuclease, Pancreatic
Topics
  • Cell Line
  • Cell Movement
  • Cell Nucleus (chemistry)
  • Cell Proliferation
  • Cells, Cultured
  • Endothelial Cells (virology)
  • Herpesvirus 8, Human (physiology)
  • Humans
  • Neovascularization, Pathologic (virology)
  • Protein Transport
  • RNA, Ribosomal (biosynthesis)
  • Ribonuclease, Pancreatic (biosynthesis)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: