HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on beta-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells.

AbstractBACKGROUND:
Activation of the liver x receptors (LXRs) by exogenous ligands stimulates the degradation of beta-amyloid 1-42 (Abeta42), a peptide that plays a central role in the pathogenesis of Alzheimer's disease (AD). The oxidized cholesterol products (oxysterols), 24-hydroxycholesterol (24-OHC) and 27-hydroxycholesterol (27-OHC), are endogenous activators of LXRs. However, the mechanisms by which these oxysterols may modulate Abeta42 levels are not well known.
RESULTS:
We determined the effect of 24-OHC and/or 27-OHC on Abeta generation in SH-SY5Y cells. We found that while 27-OHC increases levels of Abeta42, 24-OHC did not affect levels of this peptide. Increased Abeta42 levels with 27-OHC are associated with increased levels of beta-amyloid precursor protein (APP) as well as beta-secretase (BACE1), the enzyme that cleaves APP to yield Abeta. Unchanged Abeta42 levels with 24-OHC are associated with increased levels of sAPPalpha, suggesting that 24-OHC favors the processing of APP to the non-amyloidogenic pathway. Interestingly, 24-OHC, but not 27-OHC, increases levels of the ATP-binding cassette transporters, ABCA1 and ABCG1, which regulate cholesterol transport within and between cells.
CONCLUSION:
These results suggest that cholesterol metabolites are linked to Abeta42 production. 24-OHC may favor the non-amyloidogenic pathway and 27-OHC may enhance production of Abeta42 by upregulating APP and BACE1. Regulation of 24-OHC: 27-OHC ratio could be an important strategy in controlling Abeta42 levels in AD.
AuthorsJaya Rp Prasanthi, Amber Huls, Sarah Thomasson, Alex Thompson, Eric Schommer, Othman Ghribi
JournalMolecular neurodegeneration (Mol Neurodegener) Vol. 4 Pg. 1 (Jan 06 2009) ISSN: 1750-1326 [Electronic] England
PMID19126211 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: